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Executive Summary 

The purpose of this study was to determine empirically a level of conflict detection accuracy for the 
En Route Automation Modernization (ERAM) Conflict Probe that would be acceptable for display 
on the radar side (R-side) and to assess the probe’s observed accuracy in relation to that criterion.  We 
performed a series of analyses to assess two questions:  (1) Is it possible, based on the existing 
human factors literature, to define a minimum level of decision-support automation accuracy required 
to improve joint human-automation performance?  (2) How well (according to appropriate accuracy 
metrics) can the Conflict Probe function of ERAM predict aircraft-to-aircraft conflicts? 

For the first question, we conducted a meta-analysis of 12 studies from the human factors literature, 
studying the effect of imperfect automation on system performance.  This analysis quantified the 
relationship between several accuracy metrics and the corresponding automation effect size (i.e., 
performance of a human-automation system, as compared to the human operating without an 
automation aid).  The automation reliability metric (overall percent correct) exhibited a statistically 
significant positive relationship with effect size.  We found a ―crossover point‖ of 0.65 reliability, 
with automation accuracy greater than this value likely resulting in performance benefits.  This is 
similar to the value obtained by Wickens and Dixon (2007), using a different methodology.  Noise in 
the data led to a large amount of uncertainty in our estimate, however, with the 95% confidence 
interval ranging from 0.39 to 0.72.  The other metrics explored were the basic hit and false alarm 
rates from signal detection theory (SDT), and Positive Predictive Value (PPV), an operationally 
meaningful metric commonly used in clinical work which indicates what proportion of reported 
alerts are valid.  We did not find statistically reliable relationships between these metrics and the 
performance benefit realized from the automation.   

For the second question, we computed the Conflict Probe’s prediction accuracy on the same metrics 
via additional analyses based on the results of engineering analyses by Crowell, Fabian, Young, 
Musialek, and Paglione (2011) and Crowell and Young (2012).  The values found in this analysis 
were compared with the results of our meta-analysis.  The results indicated that when Conflict Probe 
performance on the reliability metric was estimated liberally—that is, when a larger set of correct 
rejections (CRs) was included in the input data—the automation performance exceeded the upper 
bound of the confidence interval for the crossover point, suggesting that it may be sufficiently 
accurate to improve Air Traffic Control (ATC) performance.  However, when the strictest criterion 
was adopted and no CRs were included in the analysis, the reliability fell short of the lower bound of 
the confidence interval for the crossover point.  For other accuracy metrics, such as hit and false 
alarm rates and PPV, the data from the studies reviewed for the meta-analysis did not provide 
sufficient statistical reliability to determine the acceptability of the Conflict Probe performance.  

In summary, the present analyses lay the groundwork toward answering the stated research questions, 
but could not definitively establish the performance of proposed Conflict Probe algorithms, nor 
could they identify a clear accuracy criterion for operational acceptance.  Further study is recommended 
(a) to determine, via operational ATC input, an appropriate cutoff for including aircraft pairs in 
engineering analyses so that the computed CR rate, and resulting reliability and related metrics, are 
neither too high nor too low to characterize performance in an operationally meaningful way; (b) to 
examine Conflict Probe false alarms in detail to determine whether the false alarms that are decreasing 
the values on the metrics are, in fact, operationally acceptable; and (c) to identify the effect of 
automation reliability, hit rate, false alarm rate, and PPV on performance in the specific context of 
Conflict Probe.  Operational input is key to answering all these questions more definitively.  For 
example, automation responses should only increase the value of an accuracy metric to the extent 
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that the responses add informational value for the controller and should only decrease the accuracy 
metric to the extent that they risk impairing automation-assisted controller performance.  The 
present results will, therefore, be used as input to the design of evaluations to study these important 
questions in depth. 
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1. INTRODUCTION 

The Human Factors Branch (ANG-E25) at the Federal Aviation Administration (FAA) William J. 
Hughes Technical Center (WJHTC) conducts human-in-the-loop (HITL) simulations to assess 
alternative en route system design elements as part of the Separation Management project.  The 
results of these HITL simulations will be used to develop requirements for the En Route Automation 
Modernization (ERAM) system.  Two HITL simulations have been conducted so far.  The first 
HITL was conducted to investigate the effect of variable separation requirements within a sector 
and among aircraft, as well as a variety of automation tools to aid controllers’ implementation of 
variable requirements.  The second HITL was conducted to evaluate issues that include (a) the 
location and format of the Conflict Probe notification on the controller workstation, (b) the 
replacement of the current radar (R-side) and/or data (D-side) controller workstation display with 
a 30-inch commercial-off-the-shelf (COTS) monitor, and (c) alternative pointing devices to the 
existing controller workstation trackball.  

The Human Factors branch is now planning to conduct a third HITL in the Separation Management 
series.  We conducted two related data analysis tasks, and integrated the results of the two sets of 
analyses, to verify the need for the third HITL simulation and for preliminary research to better 
characterize the current accuracy of the Conflict Probe.  One analysis was a more rigorous version 
of the informal meta-analysis conducted by Wickens and Dixon (2007) to determine a cutoff for the 
reliability that automated decision-support tools must exceed to improve the performance of the joint 
human-automation system.  The other analysis was conducted to assess the current state of the 
maximum achievable reliability of the ERAM Conflict Probe.  The results of the analyses were then 
compared to determine the acceptability of the current Conflict Probe accuracy.  

In the current (HOST) implementation of the en route controller workstation, two automation 
features signal potential conflicts to controllers: Conflict Alert and Conflict Probe.  Conflict Alert uses 
the momentary speed and heading of aircraft to predict losses of separation within approximately two 
to three minutes.  When a loss of separation is predicted, the data blocks of the relevant aircraft flash 
and information about the predicted conflict appears in the Conflict Alert List on the R-side display.   

Conflict Probe uses momentary speed and heading, along with additional information (e.g., filed 
flight plan and cleared route variations), to predict losses of separation with look-ahead times as long 
as 20 minutes for high-likelihood conflicts.  When a loss of separation between aircraft is predicted, 
a red number appears in the Aircraft List and the relevant data blocks within the Graphical Plan 
Display on the D-side.  When a loss of separation between aircraft conformance boundaries is 
predicted, a yellow number appears.  The value of the numbers indicates the total number of 
conflicts predicted.  No notification is provided on the R-side. 

The strategic nature of Conflict Probe provides important functionality for controllers.  The long 
look-ahead time can aid in detecting potential conflicts earlier.  Through trial-planning tools, it can 
also help controllers avoid actions that would result in future conflicts.  At present, this functionality 
is available only on the D-side, which limits its usefulness.  When controllers are working as a team, 
the R-side controller does not get the full benefit to situation awareness provided by Conflict Probe 
and cannot assist the D-side controller with trial planning.  A controller working a sector alone, 
particularly in high workload situations, is likely to view the D-side minimally or not at all.  

Considering the limitations of the current implementation, it is desirable to provide Conflict Probe 
functionality to both R-side and D-side controllers.  However, controllers generally believe that the 
current Conflict Probe algorithm produces an unacceptably large number of false or nuisance alerts.  
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A concern therefore exists that introducing the current Conflict Probe to the R-side would create 
excessive distractions, consequently reducing situation awareness and overall performance. 

Several changes to the algorithm have been proposed and are currently being tested, with the hope 
that Conflict Probe can be substantially improved.  To properly evaluate these changes, it is critical 
to answer three questions: 

1. Performance Metric(s): Of various possible metrics that one could use to describe 
automation performance (e.g. error rate, d’, etc.), which metric (or metrics) most 
appropriately characterizes the automation performance in an operationally meaningful 
way (e.g., a way that will predict joint human-automation performance)?  

2. Performance Criterion: What is the ―crossover point‖ of the metric(s); that is, the 
automation performance threshold below which system performance will suffer? 

3. Current Performance: What is the performance level of the proposed Conflict Probe 
algorithm(s) on the performance metric(s) chosen under Question 1? 

A fair amount of work in the human factors literature addresses the effects of automation on human 
and overall system performance.  Therefore, we conducted a literature review to determine whether 
Questions 1 and 2 have been definitively answered in a way that is clearly applicable to Conflict 
Probe.  We then conducted further analysis on the results of the engineering studies of Crowell et al. 
(2011) and Crowell and Young (2012) to determine the Conflict Probe’s performance on potentially 
useful metrics that had not been computed in the two papers. 

2. HUMAN FACTORS LITERATURE REVIEW AND META-ANALYSIS 

2.1 Background 

Wickens and Dixon (2007) conducted an informal meta-analysis of human factors studies, with a 
goal of describing the relationship between automation performance and overall performance.  As 
in the current analysis, they attempted to establish whether there was an automation performance 
threshold, below which operator performance was reduced to a level worse than the baseline (no-
automation) condition.  Wickens and Dixon (2007) had four criteria for studies to be included in 
their analysis: 

1. The task environment made all of the necessary raw data available to the human user.  
The automation did not have access to any information that was unavailable to the user, 
and the presence of automation did not limit users’ access to raw data. 

2. The experiment included a baseline experimental condition that presented raw data to 
users without any automation aid, and at least one condition with an additional 
automation aid that was not perfectly reliable (i.e., % correct < 100).  Many studies also 
included conditions with perfectly reliable automation, but these were not considered 
in the analysis. 

3. Automation output was reported in sufficient detail to calculate the reliability of the 
automation (i.e., percent correct; see Formula (1) in Section 2.2.2.  Ideally, studies’ 
methodology reporting would include all four cells of the signal detection matrix: valid 
alerts (hits, H), valid non-alerts (correct rejections, CR), invalid alerts (false alarms, FA), 
and invalid non-alerts (misses, M).  
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4. Users were exposed to automation errors through training or, at a minimum, were 
informed that the automation was not perfectly reliable.  This ensured that users’ 
expectations were not grossly mismatched with actual automation performance. 

Sixteen studies met these criteria.  Many of the studies examined multiple reliability levels, other 
independent variables (e.g., workload), and multiple dependent variables (e.g., error rate and 
response time), yielding a total of 35 comparisons between baseline results and automation results.  
The majority of comparisons were on the automation-aided task, but some studies examined multi-
task environments in which the effect of automation on concurrent tasks could also be measured 
and compared against baseline.  For each of the 35 baseline-automation comparisons, Wickens and 
Dixon assigned an impact score reflecting whether a statistically significant difference (p < 0.05) had 
been found between the two conditions:  

-1 = Automation significantly worse than baseline 

0 = No significant difference between baseline and automation 

1 = Automation significantly better than baseline 

-2 (or 2) = For studies with multiple automation reliability levels: 

Automation significantly worse (or better) than another 

automation level that in turn was significantly worse (or 

better) than baseline, e.g., if performance for the 0.6 

condition was lower than performance for the 0.8 condition, 

which in turn was lower than baseline performance, the 0.8 

condition would receive an impact score of -1 and the 0.6 

condition would be assigned a -2 score. (Note:  this applied to a 

small number of data points.) 

A linear regression was performed on this data with reliability of the automation serving as the 
predictor variable and baseline-automation impact score serving as the predicted variable.  The 
analysis exhibited a statistically significant positive relationship, with greater automation reliability 
associated with better system performance as compared to baseline.  The regression line crossed the 
0 impact mark at a reliability level of 0.70, with a 95% confidence interval from 0.63 to 0.77.  In 
other words, the analysis suggested a 0.70 automation reliability threshold, with automation reliability 
less than this value being more likely to decrease performance than increase it, relative to baseline. 

2.2 Method 

The present analysis adopted much of the Wickens and Dixon (2007) framework, using the same 
four inclusion criteria.  However, our methodology departed from theirs in several important ways: 
composition of studies, automation metrics, and measure of relative performance. 

2.2.1 Composition of Studies 

The present analysis included three studies that were not included by Wickens and Dixon (2007), two 
of which were published since 2007.  There were also several studies that were used by Wickens and 
Dixon but not included here.  Some of the excluded studies did not actually have baseline conditions 
that were sufficiently comparable to the automation conditions (Molloy & Parasuraman, 1996; 
Parasuraman, Molloy, & Singh, 1993; Wickens, Dixon, & Johnson, 2005; Yeh & Wickens, 2001).  
Other studies had baseline conditions but did not directly compare baseline and specific automation 
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conditions.  Rather, they compared baseline to the average performance on a set of multiple 
automation conditions with different reliability levels, making it impossible to determine relative 
performance for any specific reliability level (Ben-Yaacov, Maltz, & Shinar, 2002; Dingus et al. 1997; 
Maltz & Shinar, 2003).  Another study (Maltz & Meyer, 2001) performed the relevant comparisons, 
but did not provide sufficient detail to compute effect sizes.  Of the 16 studies used by Wickens 
and Dixon, nine were considered appropriate for inclusion in the present analysis.  Of those studies 
retained, several had individual data points that we excluded because of incompatible conditions or 
insufficient detail reported (Davison & Wickens, 2001; Dixon, Wickens, & McCarley, 2007; Skitka, 
Mosier, & Burdick, 1999).  Several studies examined multiple dependent variables or presentation 
formats for the same automation level.  Though Wickens and Dixon chose to average over these in 
some cases, we include every comparison as a separate data point.  The full set of data in the present 
analysis included 34 baseline-automation comparisons from 12 studies.  

2.2.2 Automation Performance Metrics 

Wickens and Dixon (2007) characterized automation performance using a single metric: reliability, or 
the proportion of all opportunities that were responded to correctly by the system.  Mathematically, 
this can be expressed as follows: 

 (1) 

 

 

where H = total number of hits, CR = correct rejections, M = misses, and FA = false alarms.  In 
addition to reliability, the present analysis explored the relationship between automation and overall 
performance with three other metrics describing automation performance, hit rate (HR), false alarm 
rate (FAR), and Positive Predictive Value (PPV).  HR and FAR are standard signal detection theory 
(SDT) metrics and the formulas are as follows: 

 (2) 

 

 

 (3) 

 
 

PPV, though not one of the usual SDT metrics, is commonly reported in studies that assess the 
predictive capability of an automated system or a human.  It is defined as follows: 

 (4) 
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This formula answers the question: ―What percentage of the alerts that are generated are true?‖ or, 
worded alternatively, ―How many false alarms are there for every hit?‖ 

2.2.3 Measure of Relative Performance 

Wickens and Dixon (2007) performed a linear regression on impact scores of statistical significance 
that, as described earlier, was a categorical variable with only five possible values.  In contrast to this 
approach, we performed a traditional meta-analysis on effect size, a measure of the difference 
between conditions relative to the total variability in the data.  There is some similarity between the 
impact score and effect size measures, as effect size is essentially what is being tested in a statistical 
significance test.  Beyond this similarity, an analysis on effect size has two principal advantages.  As a 
continuous variable, it is not susceptible to the potential distortions caused by sharply separating 
values that fall on different sides of the arbitrary p < 0.05 cutoff.  Also, effect size is independent of 
the total number of data points collected (N), whereas statistical significance can be greatly affected 
by N.  A small difference between conditions can be statistically (though perhaps not practically) 
significant with high N, and a meaningfully large difference can fall short of significance if low N 
results in insufficient power.  Again, using effect size as the measure of interest avoids these 
distortions.  The measure of effect size used in the present study was Cohen’s d, 

 (5) 

 
 

where = mean performance in the automation condition, = mean performance in the non-
automated baseline condition, and s is the standard deviation of measured performance.  Negative 
values of d indicate that the overall system performed better in the baseline condition, in the absence 
of automation assistance, whereas positive values indicate better performance in the automated 
condition.  Although absolute values of d can range from 0 to infinity, a general guideline is that 
values around 0.2 are small, 0.5 are moderate, and 0.8 are large (Cohen, 1977).  Cohen’s d was not 
directly reported in any of the studies, but it could be derived from reported means and standard 
deviations, as above, or from t or F statistics. 

2.3 Results 

Table 1 contains all of the data points for the present analysis of the human factors literature.  The 
authors and publication date of the study are listed in the first column (see References section for full 
citations).  The reliability, HR, FAR, and PPV of the automation condition(s) in the study are in 
columns 2 through 5.  The effect size of system performance in the automation condition compared 
to the non-automated baseline is in column 6.  The task domain and participant population are in 
columns 7 and 8.  The last column contains an indication of whether the measured task was considered 
primary or non-primary (for multi-task environments) or was the only task performed.  Note that 
there can be multiple entries for a particular level of automation performance in a single study when 
there were multiple dependent variables (e.g., error rate and response time) or automation display 
formats (e.g., text vs. spatial cues). 
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Table 1. Summary of Studies, Automation Performance Levels, and Effects 
Compared to Baseline 

 
Automation Performance 

    

Study Reliability 
Hit 

Rate 

False 
Alarm 
Rate PPV 

Cohen's 
d Task Domain 

Participant 
Population 

Task 
Priority 

Davison & Wickens, 2001 70% 70% 0% 100% 0.00
e
 Helicopter flight Pilots Non-

primary 

Davison & Wickens, 2001 70% 70% 0% 100% 0.97 Helicopter flight Pilots Non-
primary 

Dixon & Wickens, 2006 64% 94% U 67% -0.78 (S) UAS operation Pilots & students Non-
primary 

Dixon & Wickens, 2006 64% 67% U 94% -0.43 UAS operation Pilots & students Non-
primary 

Dixon & Wickens, 2006 64% 94% U 67% -0.42 UAS operation Pilots & students Non-
Primary 

Dixon & Wickens, 2006 64% 67% U 94% -0.68 (S) UAS operation Pilots & students Non-
primary 

Dixon & Wickens, 2006 80% 89% U 89% -0.33 UAS operation Pilots & students Non-
primary 

Dixon & Wickens, 2006 80% 89% U 89% -0.02 UAS operation Pilots & students Non-
primary 

Dixon et al., 2007 60% 100% 80% 56% -2.23 (S) Aircraft flight Students Non-
primary 

Dixon et al., 2007 60% 20% 0% 100% -1.01 Aircraft flight Students Non-
primary 

Dixon et al., 2007 60% 100% 80% 56% -2.37 (S) Aircraft flight Students Non-
primary 

Dixon et al., 2007 60% 20% 0% 100% 0.37
e
 Aircraft flight Students Non-

primary 

Galster et al., 2001 67% U U U 3.23 (S) Artificial visual 
search 

Unknown Only 

Galster et al., 2001 67% U U U 2.89 (S) Artificial visual 
search 

Unknown Only 

Hitchcock et al., 2003 95% 40% 3% 40% 0.50 (S) Artificial 
detection 

Students Only 

Hitchcock et al., 2003 95% 40% 3% 40% 0.43 (S) Artificial 
detection 

Students Only 

Hitchcock et al., 2003 98% 80% 1% 80% 0.89 (S) Artificial 
detection 

Students Only 

Hitchcock et al., 2003 98% 80% 1% 80% 0.72 (S) Artificial 
detection 

Students Only 

Lehto et al., 2000 71% 100% 47% 56% 1.07 (S) Automobile 
driving 

Experienced 
drivers 

Only 

(table continues) 
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Automation Performance 

    

Study Reliability 
Hit 

Rate 

False 
Alarm 
Rate PPV 

Cohen's 
d Task Domain 

Participant 
Population 

Task 
Priority 

Lehto et al., 2000 96% 89% 0% 100% 1.69 (S) Automobile 
driving 

Experienced 
drivers 

Only 

Rovira & Parasuraman, 
2010 

67% 67% 0% 100% 0.07 Air traffic control Certified 
controllers 

Primary 

Rovira & Parasuraman, 
2010 

75% 100% U 75% 0.49 (S) Air traffic control Certified 
controllers 

Primary 

Skitka et al., 1999 88% 94% U 94% 0.00
e
 Aircraft flight Students Primary 

St. John & Manes, 2002 75% 75% 25% 23% 1.84 (S) Artificial visual 
search 

Students Only 

St. John & Manes, 2002 75% 75% 25% 23% 1.02 (S) Artificial visual 
search 

Students Only 

St. John & Manes, 2002 95% 95% 5% 66% 5.78 (S) Artificial visual 
search 

Students Only 

St. John & Manes, 2002 95% 95% 5% 66% 6.46 (S) Artificial visual 
search 

Students Only 

Wang et al., 2009 75% 100% 50% 67% 0.75 Combat 
identification 

Students Only 

Wang et al., 2009 88% 100% 25% 80% 1.59 (S) Combat 
identification 

Students Only 

Wiegmann et al., 2006 78% 90% 25% 47% 0.61 Baggage 
screening 

Non-screener 
volunteers 

Only 

Wiegmann et al., 2006 78% 90% 25% 47% 1.23 (S) Baggage 
screening 

Non-screener 
volunteers 

Only 

Wiegmann et al., 2006 78% 90% 25% 47% 2.46
e
 (S) Baggage 

screening 
Non-screener 
volunteers 

Only 

Xu et al., 2007 83% U U U 1.06 Aircraft conflict 
detection 

Student pilots Only 

Xu et al., 2007 83% U U U 0.13 Aircraft conflict 
detection 

Student pilots Only 

Note. PPV = Positive Predictive Value, U = Unknown (see explanation following table), UAS = Unmanned Aircraft 
Systems. (S) in ―Cohen’s d‖ column indicates the effect was statistically significant (p <= 0.05), given the sample size 
used in the study. An ―e‖ in ―Cohen’s d‖ column indicates the effect size was estimated from incomplete data reporting. 
Adjusting or removing these values has no meaningful impact on any subsequent analyses. 

 

For several of the studies, authors stated the overall reliability of the automation but did not provide 
sufficient detail to calculate some of the other performance metrics.  This was particularly the case 
with false alarm rates.  Many studies had false alarm events but no explicitly defined correct rejection 
events, so the denominator for the false alarm rate computation was ambiguous.  A ―U‖ entry in 
Table 1 indicates that the value on the relevant automation metric is unknown.  Figure 1 contains 
four scatterplots that illustrate the association between metrics of automation performance and the 
baseline-automation effect size for each of the relevant data points.  
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Figure 1. Scatterplots of automation performance and associated effect size relative to baseline:   
(a) reliability, (b) hit rate, (c) false alarm rate, and (d) positive predictive value. 

2.3.1 Reliability 

There was a statistically reliable positive relationship between automation reliability and effect size, 
r(32) = 0.49, R2 = 0.24, p = 0.003.  The regression equation expressing this relationship between 
reliability (Rel) and effect size (d) was d = 7.11*Rel - 4.64.  The crossover point of effect size = 0 was 
at reliability = 0.65.  To explore the noise in the data and the influence of outliers, a bootstrapping 
simulation was performed.  In this analysis, the set of 34 data points was sampled with replacement 
one million times to generate one million 34-point samples, each with a corresponding regression 
function.  The 95% confidence interval of the correlation coefficient ranged from 0.18 to 0.71.  The 
interval for the crossover point ranged from 0.39 to 0.72. 

Regarding outliers, two data points in particular had a large amount of influence on the regression 
line, as measured by Cook’s D.  These were the two data points from the St. John and Manes (2002) 
study with exceptionally large effect sizes.  When they were removed and regression was performed 
on the trimmed data set, the correlation was reduced but remained reliable, r(30) = 0.36, R2 = 0.13, 
p = 0.046, with a crossover point of 0.62.  

2.3.2 Hit and False Alarm Rates 

There was no statistically reliable relationship between automation HR and effect size, r(28) = 0.18, 
R2 = 0.03, p = 0.35.  Removing high-influence data points did not have any qualitative effect. 
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A marginally statistically reliable negative relationship existed between automation false alarm rate and 
effect size, r(20) = -0.41, R2 = 0.17, p = 0.06.  The regression equation expressing this relationship 
between false alarm rate (FAR) and effect size (d) was d = -3.32*FAR + 1.68.  The crossover point 
of effect size = 0 was at false alarm rate = 0.51.  However, this result was highly influenced by four 
data points: the St. John and Manes (2002) study with large positive effect sizes and the Dixon, 
Wickens, and McCarley (2007) study with exceptionally high automation false alarm rates and 
negative effect sizes.  When they were removed and regression was performed on the trimmed data 
set, the trend was inverted, with a marginally reliable positive relationship between false alarm rate 
and effect size, r(16) = 0.42, R2 = 0.18, p = 0.08 (see Figure 2). 

 
Figure 2. Scatterplots of automation false alarm rate and associated effect size relative to baseline, 

with four outliers from original data set removed. 

2.3.3 Positive Predictive Value 

There was no statistically reliable relationship between PPV and effect size, r(28) = 0.18, R2 = 
0.03, p = 0.34.  Removing high-influence data points did not have any qualitative effect. 

2.4 Discussion 

Like Wickens and Dixon (2007), the present analysis indicated a positive relationship between (a)  
automation reliability and (b) relative performance with automation as compared to performance in 
a baseline condition without it.  The 0.65 crossover point observed here is very close to the 0.70 
value presented by those authors.  However, several main factors suggest that these findings should 
be interpreted with caution. 

Despite being a fairly comprehensive survey of the relevant literature, the Wickens and Dixon (2007) 
analysis and the present analysis include a rather small number of unique studies.  Furthermore, few of 
these studies exhibit any negative effect of automation at all.  Of the 16 studies analyzed by Wickens 
and Dixon, only 5 studies had conditions or dependent variables that showed any statistically 
significant cost with automation, three of which were removed from the present analysis because 
they lacked a direct comparison to the baseline condition.  Of the 12 studies that we analyzed, only 
2 studies, producing nine data points in this analysis, had negative automation-baseline effect sizes.  
These studies were produced by the same research group using a very similar task domain.  If the 
analysis were restricted to the remaining 10 studies, it would be impossible to interpolate any crossover 
point.  Finally, these studies include a wide variety of tasks and participant populations, as well as 
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variety in the number of concurrent tasks to be performed and the priority placed on those tasks.  It is 
possible that the effect of automation reliability on performance differs systematically according to 
the value of these dimensions. 

3. ANALYSIS OF CONFLICT PROBE ENGINEERING STUDY RESULTS 

3.1 Background 

The Concept Analysis Branch (ANG-C41) has conducted a series of engineering studies on how the 
prediction performance of the ERAM Conflict Probe can be further improved with algorithmic 
enhancements and parameter changes.  Crowell et al. (2011) conducted an analysis of the ability of 
the Conflict Probe subsystem of ERAM to detect aircraft-to-aircraft conflicts under various 
parameter and algorithmic settings.  Traffic sets were created from actual recorded data in Washington 
Air Route Traffic Control Center (ARTCC, ZDC) in which the tracks of aircraft were time-shifted 
to create a sufficient number of conflicts to conduct the analysis.  The raw traffic data would be 
expected to contain few conflicts, because with real traffic, most conflicts are resolved before they 
occur.  The traffic scenarios were run through a fast-time simulation to determine what conflicts 
would have happened and whether the automation would have detected a conflict.  Their results 
were reported in terms of the traditional signal detection categories—that is, the numbers and rates 
of hits, misses, false alarms and correct rejections made by the automation.  All pairs of aircraft that 
had ―encounters‖ were included in the analysis, with an encounter being defined as a pair of aircraft 
having, at any time during the simulation run, a simultaneous lateral separation of less than 25 nmi 
and vertical separation of less than 4,000 ft.  These boundaries were set to permit a reasonably sized 
set of non-conflict aircraft pairs.  A total of about 17,000 encounters were included in the analyses 
by Crowell et al. 

The results were reported first in traditional crisp terms—every event either was or was not a 
conflict (a conflict being a case where lateral separation was less than 5 nmi and vertical separation 
was simultaneously less than 1,000 ft) and the automation response was defined as either predicting 
or not predicting a conflict.  Because very few conflicts were completely missed by the automation, a 
late response (i.e., a conflict that was first predicted less than a specified time before its occurrence) 
was defined as being a non-response.  Such late alerts were used as a proxy for misses, which were 
close to nonexistent.  The late alert count as defined by Crowell et al. (2011) included both late alerts 
and a small number of actual missed detections. 

Additionally, Crowell et al. (2011) reported fuzzy signal detection analysis results, in which a given 
encounter could fall into more than one of the traditional signal detection categories.  The degree 
to which an event was a conflict (signal in SDT terms) could fall between zero and one based on the 
separation distance between the aircraft.  For example, if a pair of aircraft had zero vertical separation 
and a lateral separation just beyond the 5-nmi cutoff, it would be classed partly as a non-conflict 
because it did not meet the binary cutoff for defining a conflict, but partly a conflict because it would 
likely be watched as an event of potential interest by many controllers.  The degree to which an 
encounter was predicted by ERAM to be a conflict was permitted to vary anywhere between zero 
and one, with the degree of ―conflict predicted‖ (response in SDT terms) defined based on predicted 
separation and warning time.  For both the crisp and the fuzzy analyses, Crowell et al. computed the 
late alert rate (LAR) as follows: 

 (6) 
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Crowell et al. (2011) treated LAR as the miss rate.  They also reported the FAR (see Section 2.2.2) 
for each simulation run.   

Crowell and Young (2012) conducted a similar analysis for time-shifted traffic recordings from 
Chicago ARTCC (ZAU), which generated about 11,000 encounters.  The purpose of this analysis, 
unlike that of Crowell et al. (2011) which compared multiple parametric settings and prototype 
enhancements, was to test a set of adherence parameters that define whether a flight is considered as 
being on its route.  These parameters result in the removal from analysis of encounters where a 
flight was significantly off its route.  Had these flights been included, the primary effect would have 
been an FAR that was spuriously high from the operational perspective, because invalid alerts would 
be occurring for flights that were off their assigned route.  Multiple categories were used for classifying 
the result of each predicted or actual conflict, going beyond the usual SDT categories, for reasons 
pertinent to their analysis.  However, each event was also classed at a high level as a hit—termed 
Valid Alert (VA)—miss, or false alarm, permitting the generation of some of the traditional SDT 
metrics.  Crowell and Young used different criteria than Crowell et al. for including aircraft pairs in 
the analysis:  an encounter was defined as a simultaneous lateral separation of less than 30 nmi and 
vertical separation of less than 5,000 ft.  CR counts were not included in the original memo but were 
later provided (Crowell & Willems, personal communication, 2012), which made it possible to 
complete the computations of SDT metrics and the other metrics used for the present study.  Crowell 
and Young did not compute fuzzy SDT metrics. 

3.2 Method 

For the present analysis, the counts and rates found by Crowell et al. (2011) and Crowell and Young 
(2012) were converted into the reliability metrics that were reported in, or computed from, the 
studies included in the meta-analysis described in Section 2.  Specifically, the metrics computed were 
reliability (best and worst case), PPV, hit rate, and false alarm rate.  Reliability uses the formula 
defined by Wickens and Dixon (2007), shown in Section 2.2.2.  This formula reflects the proportion 
of the total events (encounters) for which the automation made a correct judgment.  

It has been suggested within ANG-E25 that the criteria for including encounters in the analysis set 
of Crowell et al. (2011), while useful for their study’s purposes, were too lax for the purpose of 
evaluating accuracy from the operational perspective, because encounters where the aircraft are near 
the outer limits of their criteria (e.g., 24 miles apart laterally and 3,000 ft vertically) are generally not 
situations that controllers would be even slightly concerned with.  Although they were considered 
CRs by the analysis, the argument can be made that they are not really events of interest.  Therefore, 
the Wickens and Dixon (2007) formula might be considered a best case for reliability, in which the 
automation is given ―credit‖ for all events that could even potentially be considered of interest.  
For the purpose of reporting the present results, the above formula for R will therefore be labeled 
Rbest.  For purposes of clarity, the reliability formula given in Section 2.2.2 is reproduced with its 
alternative name. 

 (7) 

 
 

The other extreme in this type of reliability analysis is to assign no credit for any of the CRs.  In 
some studies and real-world applications, no clear definition exists of what would constitute a CR.  
Although ATC conflict detection is not an example of such an application, some of the domains 
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studied in the meta-analysis described in Section 1 may be considered as such.  Therefore, to enable 
a fair comparison across studies and applications, a worst case reliability was defined as follows: 

 (8) 

 
 

Hit rate was not directly reported by Crowell et al. (2011), who focused on error rates rather than 
correctness rates, because a goal of their analysis was to determine how to best reduce the main 
types of errors—misses and false alarms.  However, it is easily calculated by subtracting the miss 
rate from 1.  As mentioned in Section 3.1, Crowell et al. used late alerts as a proxy for misses, 
summing them together with the small number of actual misses to derive a total miss count.  For 
this reason, the hit rate for the present analysis was defined as follows: 

 (9) 

 
 

The formulas used for FAR and PPV in this analysis are identical to those given in Section 2.2.2; 
therefore, they are not reproduced here. 

3.3 Results 

Because multiple combinations of parameter settings and prototype enhancements were studied in 
the Crowell et al. (2011) ZDC analysis, they reported  results for 30 experimental runs, in addition to 
two baseline runs—so termed because they did not contain the parameter settings or the prototype 
enhancements being tested.  The first baseline used settings equivalent to those in the Conflict Probe 
implemented in the present operational version of ERAM.  The other baseline contained a set of 
trajectory modeling enhancements that were also incorporated into the experimental runs.  This 
second baseline was included in the original study to provide a more valid comparison with the 
experimental runs.  The runs varied in terms of automation performance.   

Because the goals of Crowell et al. and of the present study were to assess the optimal level of 
automation performance attainable by the Conflict Probe under the current implementation, only 
the highest performing run on each metric was selected for the present comparison.  Crowell and 
Young (2012) were interested in testing an entire set of parameters, rather than various combinations 
of parameters as in Crowell et al., and therefore reported only two sets of SDT results; one with and 
one without the adherence parameters.  

The results for the selected ZDC and ZAU runs on the various metrics of interest are presented in 
the following subsections. 

3.3.1 Reliability 

Table 2 shows the reliability values, as computed according to both the best-case and worst-case 
computations.  For the ZDC analysis, which had multiple experimental runs (30) and baseline runs 
(2), the values reported in the table are the maximum values achieved in any of the 30 experimental 
runs and in either of the baseline runs. 
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Table 2. Experimental and Baseline Reliability Values (for ZDC, Maximum Experimental 
Values and Maximum Baseline Values) 

  Rbest Rworst 
ARTCC Crisp or fuzzy metrics Experimental Baseline Experimental Baseline 

ZDC Crisp 0.964 0.918 0.192 0.104 
ZDC Fuzzy 0.970 0.943 0.330 0.212 
ZAU Crisp 0.948 0.876 0.244 0.119 

Note. ARTCC = Air Route Traffic Control Center, ZDC = Washington ARTCC, ZAU = Chicago ARTCC. 

 

The automation exhibited very high values on the best-case reliability, where all CRs were included 
in the analysis.  The best achievable Rbest for each analysis was 0.964 (ZDC crisp), 0.970 (ZDC 
fuzzy), and 0.948 (ZAU).  These values are well above the reliability cutoffs determined in Wickens 
and Dixon (2007) and the present meta-analysis and, in fact, are above the upper bound of the 
confidence intervals.   

For the worst-case reliability, the highest values achieved were 0.192 (ZDC crisp), 0.330 (ZDC 
fuzzy), and 0.244 (ZAU).  Taken at face value, these figures are well below the cutoff reliability level, 
and the confidence interval lower bound, for automation benefit according to Wickens and Dixon 
(2007) and the present meta-analysis. 

However, when comparing these observed Conflict Probe reliability values to the cutoff values from 
previous analyses, it should be noted that the studies reviewed for the meta-analyses described in 
Section 2 did not have a consistent definition of what constituted an event.  Some did not include 
any correct rejections in their reporting, whereas others had a prevalence of correct rejections as 
high as 95% of total events.  The reliability levels reported, and therefore the cutoff values computed, 
represent a mix of results from both Rbest and Rworst formulae. 

3.3.2 Hit and False Alarm Rates 

Table 3 presents the HR and FAR values.  As with reliability, the maximum performance—the 
higher/highest HR and lower/lowest FAR—is given for experimental runs and baseline runs for 
each analysis. 

Table 3. Experimental and Baseline HR and FAR Values (for ZDC, Maximum Performance 
Experimental Values and Maximum Performance Baseline Values) 

  HR FAR 

ARTCC Crisp or fuzzy metrics Experimental Baseline Experimental Baseline 

ZDC Crisp 0.910 0.916 0.035 0.082 

ZDC Fuzzy 0.933 0.931 0.028 0.057 

ZAU Crisp 0.989 0.939 0.053 0.126 

Note. ARTCC = Air Route Traffic Control Center, HR = Hit Rate, FAR = False Alarm Rate, ZDC = Washington ARTCC, 
ZAU = Chicago ARTCC. 

Like the related metric of reliability, Hit rates for the ERAM Conflict Probe were also very high: 0.916 
for crisp in ZDC, 0.933 for fuzzy in ZDC, and 0.989 in ZAU.  As with Rbest, these values seem to be 
much higher than would be necessary to see an automation benefit according to our meta-analysis of 
the automation literature.  However, it must be reiterated that a statistically reliable relationship was 



 

14 

not found in the present study between HR and automation benefit as measured by Cohen’s d, and 
that some of the reviewed studies featuring HR in the > 90% range showed a performance decrement 
due to automation.  It is not possible to make definitive conclusions about whether the Conflict Probe’s 
HR is expected to be operationally large enough, because it has not been conclusively shown that high 
HR—without considering other elements of the SDT matrix—is associated with performance benefits. 

The Conflict Probe exhibited low FARs: 0.035 for crisp in ZDC, 0.028 for fuzzy in ZDC, and 0.053 
for ZAU.  The meta-analysis did not find a stable statistical relationship between FAR (in and of 
itself) and degree of automation benefit.  However, it is encouraging (see Figure 2 and the FAR 
portion of Figure 1) that moderate to large automation benefits were seen in most of the reviewed 
studies in which automation had an FAR near zero, as the Conflict Probe had when all encounters 
meeting the specified separation criteria were included in the analysis.  Only two exceptions were 
found in the reviewed studies to the general rule of low FAR benefiting performance (out of the 
nine data points in which FAR was less than 5%), with one effect size of zero and one negative 
effect size.  Taken at face value, the ERAM automation’s FAR appears to be operationally acceptable.  
However, as noted in Section 3.2, the set of encounters used to compute this FAR may be crediting 
the automation with some CRs that are not of potential interest to controllers.  Non-alerts by the 
automation on these events, therefore, add no informational value.  If the FAR calculation were 
restricted to operationally relevant CRs only, the FAR would be higher than observed here, potentially 
much higher. 

3.3.3 Positive Predictive Value 

PPV results calculated from the data in Crowell et al. (2011) and Crowell and Young (2012) are 
given in Table 4, in the same format as Tables 2 and 3. 

Table 4. Experimental and Baseline PPVs (for ZDC, Maximum Experimental  
Values and Maximum Baseline Values) 

ARTCC Crisp or fuzzy metrics Experimental Baseline 

ZDC Crisp 0.198 0.105 

ZDC Fuzzy 0.348 0.215 

ZAU Crisp 0.245 0.120 

Note.  ARTCC = Air Route Traffic Control Center, ZDC = Washington ARTCC, ZAU =  
Chicago ARTCC. 

 

The results present an encouraging picture of the computational enhancements assessed in the original 
studies, in that the best achievable PPVs were approximately double for the experimental run (or for 
ZDC, the best performing experimental run) in each analysis as compared to the corresponding 
baseline run (or better performing baseline run in ZDC).   

The PPV metric can be communicated to controllers in a way that is highly intuitive (ratio of false 
alarms to true alerts), and the results of the Crowell et al. (2011) and Crowell and Young (2012) 
studies can thus be presented to controllers in a positive light.  For example, using the ZDC crisp 
metric, it can be accurately stated that the algorithmic and parametric improvements can reduce the 
ratio of FAs to hits from 9:1 to 4:1.  However, given the lack of a statistically reliable relationship 
between PPV and automation-related performance enhancement, further study is still needed to 
ascertain whether the observed PPVs are expected to be associated with performance improvements.  
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3.4 Discussion 

The best-case reliability values found in the present analysis of the engineering studies appear to be 
acceptable, and likely to be associated with performance benefits, according to the present meta-
analysis of experimental automation studies.  However, this is not so for the worst-case values.  When 
interpreting the worst-case finding, it must be recognized that for some experimental and operational 
tasks, it is difficult to define what constitutes a correct rejection.  Clearly ATC is one of these tasks; 
therefore, depending on what situations are included in a reliability analysis, different reliability 
numbers might be derived.  

For the present application of ATC, it is necessary to obtain further operational input to better define 
what encounters—that is, what magnitude of separation between aircraft—should be included in the 
analysis to generate the most operationally meaningful definition of CRs.  This more operationally 
sound definition of CRs will also affect the FAR that is computed because the CR count is part of 
the denominator for computing FAR.  From the present analysis, it may be tentatively concluded 
that the Conflict Probe’s current achievable FAR would be associated with performance benefit, 
but additional operational input for a better definition of what constitutes a CR will help to 
strengthen this assumption. 

The data that we analyzed from the ANG-C41 engineering studies showed what could be considered 
operationally significant PPV improvements as result of the parametric and prototype changes 
studied.  However, it is intuitive that controllers may still consider the PPVs found here to be low 
(i.e., high number of FAs relative to hits).  The results of the meta-analysis, which showed no reliable 
relationship between PPV and automation’s benefit to performance, do not permit conclusions 
about the operational appropriateness of the ERAM Conflict Probe’s current performance on the 
PPV metric.  Therefore, a more operationally oriented study is necessary to determine whether the 
prevalence of FAs in relation to hits is operationally acceptable.  It might be that some of the types 
of events that are generating false alarms are situations that are neither conflicts nor near-conflicts 
but that for operational reasons could develop into conflicts, and the controller may thus wish to 
be alerted to them.  The recommended research to directly assess this issue will be described in the 
next section. 

4. GENERAL DISCUSSION 

Like the Wickens and Dixon (2007) analysis, the meta-analysis of the human factors literature presented 
here suggests that even imperfect automation can have a positive effect on performance.  In particular, 
automation reliability was a significant predictor of performance gain over baseline, with an observed 
cutoff of approximately 0.65.  The best-case reliability of Conflict Probe is well in excess of this 
value, and in fact, with values of over 0.90, exceeds the upper bound of the confidence interval for 
the cutoff. 

However, the exact value of 0.65 may not be an appropriate standard, for two principal reasons.  First, 
this estimate was subject to a large amount of uncertainty, as indicated by the very broad confidence 
interval.  Second, the studies used in the meta-analysis may not be sufficiently applicable to the topic 
of Conflict Probe.  Only one of the 12 studies actually investigated ATC.  Most of the studies 
measured performance either in a single-task environment or on a non-primary task, in contrast to 
the complex and dynamic ATC environment in which conflict detection has high priority.  In addition, 
the majority used participants who were not experts in the task domain.  These studies may have 
been more likely to exhibit performance improvements with imperfect automation because of a low 
level of baseline performance.  In contrast, experienced air traffic controllers already perform at a high 
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level and, therefore, may be more likely to have that performance harmed by the intrusion of even 
0.80 or 0.90 reliable automation.  Similarly, HR, FAR, or PPV may have a systematic effect on 
human-automation performance in ATC, despite the lack of a relationship observed in the meta-
analysis.  For example, the St. John and Manes (2002) study—which had, by far, the greatest positive 
effect from automation and the largest influence in the meta-analysis regression—used a single, highly 
artificial task with novice participants.   

Of the 12 studies in the meta-analysis, only 2 studies exhibited a negative effect of automation 
(Dixon & Wickens, 2006; Dixon et al., 2007), both in the lower reliability condition—as would be 
expected.  One factor, not directly addressed in these two studies or in many of the experiments 
reviewed, which may affect the positive or negative impact of automation on performance, is users’ 
level of subjective confidence or trust in the automation (Lee & See, 2004).  If trust in the automation 
is properly calibrated; that is, the operator knows through training and/or experience how reliable 
the automation should be and under what conditions it should be more and less reliable (Masalonis 
& Parasuraman, 2003), performance should not be harmed as much as it otherwise would be by 
low-reliability automation, and should be helped even more by higher reliability automation than 
otherwise.  Though participants were informed of automation unreliability in each of the studies in 
the meta-analysis, the level of training and experience were less than would be present in an operational 
setting.  Appropriate training on the strengths and weaknesses of Conflict Probe may improve its 
acceptability and impact on overall performance, even if it exhibited lower levels of accuracy. 

Among the metrics we examined, the PPV automation performance metric might well have the most 
promise for being operationally intuitive.  Unfortunately, this is also the metric about which the 
present meta-analysis and Conflict Probe engineering study data analysis are least able to inform 
conclusions.  PPV can be further explored in several ways.  One is to investigate in detail the  
situations that cause the automation to generate FAs.  The FlightGUI software developed by 
ANG-C41 will be useful in conducting initial exploration of this issue.  Situations identified in this 
exploration could be further analyzed via a study wherein the situations of interest are presented to 
controllers, and they are asked to provide an assessment of the severity of the conflict, or the 
likelihood that they would wish to be informed about it.  If a significant number of the encounters 
that are generating FAs and decreasing the PPV in the present study are of operational interest to 
the controllers, then it may be appropriate to conduct engineering analyses similar to the work of 
Crowell et al. (2011) and Crowell and Young (2012) using new definitions of what constitutes a 
conflict, a ―partial‖ conflict, and a non-conflict.  These new definitions might be derived based on 
modified algorithms for defining the fuzzy SDT categories into which various encounters fall.  
Another benefit of such a study would be to find the ideal spot between the best- and worst-case 
settings for defining CRs to derive the most meaningful reliability figures.  More detailed descriptions 
of how such a study might be conducted are in preparation by ANG-E25 and the Spectrum Software 
Technology, Inc. (SST) team. 

As mentioned previously, most of the studies reviewed in the meta-analysis (described in Section 2) 
were not in the ATC domain.  The present analyses provide useful initial answers to the question of 
the Conflict Probe’s current performance vis-à-vis a benchmark for what automation performance 
levels should be to benefit human-automation system performance.  However, moderate- to high-
fidelity simulation studies that explicitly vary reliability and/or the other performance metrics assessed 
here, in the ATC domain, will be necessary to make definitive conclusions regarding operational needs 
for Conflict Probe reliability.  These issues will be considered in the planning of the third Separation 
Management HITL simulation—reliability and other performance metrics may, in fact, become a 
primary focus of this HITL. 
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ANG-C41 Concept Analysis Branch 
ANG-E25 Human Factors Branch 
ARTCC Air Route Traffic Control Center 
ATC Air Traffic Control 
COTS Commercial-Off-The-Shelf  
CR Correct Rejections 
D-side Data-side 
ERAM En Route Automation Modernization 
FA False Alarms 
FAA Federal Aviation Administration 
FAR False Alarm Rate 
H Hits 
HITL Human-In-The Loop 
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UAS Unmanned Aircraft Systems 
VA Valid Alert 
WJHTC William J. Hughes Technical Center 
ZAU Chicago ARTCC 
ZDC Washington ARTCC 
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