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Executive Summary 

The Next Generation Air Transportation System (NextGen) encompasses many different 
aspects of aviation, with two key objectives of enhancing safety and efficiency.  To support the 
NextGen program, this Weather Technology in the Cockpit (WTIC) project is focusing on 
enabling the use of weather technologies and weather presentations.  New weather presentations 
need comparisons with current weather presentations to assure enhanced usability and safe support 
for pilots during operations.   

Currently, there are no Federal Aviation Administration (FAA) or industry standards for the 
presentation of weather information in the cockpit.  This results in large symbology variations 
between vendors.  The lack of standardization can mean that some weather presentations are 
suboptimal.  Suboptimal presentations can decrease usability and degrade safety margins.  

The purpose of this study is to explore the effects of cockpit weather-presentation symbology 
on General Aviation (GA) pilot weather avoidance, weather presentation usage, and cognitive 
workload.  Twenty-five instrument-rated GA pilots participated as volunteers during the simulation.  
From this pool of volunteers, we randomly allocated each pilot to one of three simulation groups.  
During two 25-minute simulation flights, participants flew a Cessna 172 single-engine GA aircraft 
(using autopilot) under Visual Meteorological Conditions (VMC) and Instrument Meteorological 
Conditions (IMC).  The scenarios consisted of two flight segments on a route from Milton (MIP) in 
PA to Bradley International Airport in CT.  Both scenarios started in midflight and there were no 
take-offs or landings.  For both scenarios, pilots started in VMC but encountered IMC within 5 
minutes into the flight.  At 20 minutes into the flight, the weather conditions changed and the pilots 
were under VMC for the remainder of the flight. 

During the simulation, we manipulated the cockpit weather presentation so that each pilot group 
used a different weather presentation symbology.  The weather data were the same in all three weather 
presentations, but each presentation used different symbols and colors.  The weather presentations 
were based on three commercially available symbology sets.  In addition to a moving geographical 
terrain map and aircraft position symbol, each weather presentation contained precipitation 
information, meteorological report (METAR), significant meteorological information (SIGMET), 
and lightning information.  Pilots could view the weather presentation at three different zoom levels 
(5 nmi, 20 nmi, and 50 nmi; also indicated on the weather display by range rings).   

During a pre-simulation briefing, pilots were informed that a “significant squall-line 
thunderstorm associated with a fast moving cold front extending from Pittsburgh to Maine is 
moving southeast at 25 knots.  This front has scattered, moderate to heavy thunderstorms and 
Instrument Flight Rules (IFR) areas below 200 Above Ground Level (AGL).”  Pilots were told 
that they were aware of the weather and had received a preflight weather briefing but had chosen 
to proceed with their flight.  Pilots were told to fly the scenario as if they were flying Visual Flight 
Rules (VFR) with two passengers aboard while receiving flight following from New York Center.  
For purposes of the study, the New York Center had a radar malfunction, making controllers unable 
to provide vectors around the weather.  The pilots had to avoid the weather on their own using the 
cockpit weather presentation. 

To assess if variations in weather presentation symbology affect pilot decision-making and flight 
behavior, we recorded simulation data in the following categories: decision-making (weather 
deviations), weather avoidance (distance to weather), weather presentation usage (zoom levels), radio 
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communication (pilot/controller), system performance (altitude and heading changes), eye 
movements (visual scan patterns), and mental workload (oxygenation changes).   

Under the tacit assumption that matched pilot groups will perform similarly (on average) when 
confronted with the same operational tasks, we used Bayesian model comparison to analyze our 
simulation data.  Two model hypotheses were used in the analysis.  The first hypothesis, the null, 
states that there is no difference in performance or behavior between pilot groups.  The second 
hypothesis, the alternative, states that there are differences in performance or behavior between pilot 
groups.  In addition to allowing inferences about the presence of effects (by means of Bayes factors), 
this framework also provides categories that classify the evidential strength from “anecdotal” to 
“extreme.”  

For null results of no difference between groups, we have the distance-to-weather measure 
where groups essentially performed the same and kept a safe distance (on average 14 nmi to 40 nmi) 
from the 30 dBZ precipitation intensities, despite variations in precipitation symbology.  We found a 
similar null result for weather zoom usage and for pilot/controller communications.  For radio 
communications, the number and durations for communications were similar across pilot groups.  
For the zoom usage, all groups displayed a similar use of the weather presentation zoom, and they 
displayed each zoom level for similar durations.  Additional null results are pilot heading and altitude 
changes.  Overall, the three pilot groups kept the same average scenario heading and altitude.   

In contrast to these null results, we find effects that support the alternative and reflect a 
differential behavior between groups.  Although most of these effects are anecdotal in support of 
the alternative, they are nevertheless operationally important due to the potential impact on GA 
pilots.  These alternative effects include weather deviations, visual scan behavior, and cognitive 
workload.  In contrast to the anecdotal effects, we find credible effects that range from “substantial” 
to “strong.”  Here we have group differences in weather deviations and visual scanning patterns.  
Based on the weather presentation, the pilot groups chose different deviation routes from start to 
destination.  For the visual scanning behavior, we found group differences in scan patterns that 
included an increased number of fixations and saccades on the weather presentation and cockpit 
glass display.  

To conclude, in this study, we found credible effects on pilot behavior, workload, and decision-
making from the use of weather presentations.  Variations of colors and symbols create very 
different images that affect interpretation and information retrieval.  Most important, variations in 
colors and weather symbology seem to affect pilot behavior and decision-making.  This answers our 
first question “Are there effects on pilot decision-making and behavior from manipulations of 
weather presentation symbology?”  With these results in mind, we need to answer the next question 
“Are these symbology effects operationally important?”  This entails the tailoring of other scenario 
and weather parameters, not investigated in this study, to assess their operational impact on pilot 
behavior. 
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1.  INTRODUCTION 

The Federal Aviation Administration (FAA) is involved in creating a Next Generation Air 
Transportation System (NextGen).  This system will be an improvement upon today’s National 
Airspace System (NAS) infrastructure.  NextGen encompasses many different aspects of aviation, 
with two key objectives of increasing safety and efficiency.  To support the NextGen program, on-
going efforts focus on the implementation and use of weather technologies and weather 
presentations.  New weather presentations require comparisons with current meteorological (MET) 
presentations to assure an enhanced usability and safe support for pilots during operations.  The 
Weather Technology in the Cockpit (WTIC) program office (within the FAA Weather Research 
Branch) helps to accomplish this task. 

The WTIC portfolio contains multiple efforts related to the standardization of MET 
information presentation in cockpits.  These efforts are based on the premise that the lack of 
standardization is degrading pilot decision-making capability on weather-related events.  Pilots 
should be able to interpret weather information clearly during dynamic and multitasking situations 
(FAA, 2010).  This intuitive presentation allows the pilots to take actions considering future weather 
status even when they are under high task load (McAdaragh, 2002).  In order for pilots to use this 
information, it is crucial that these weather presentations integrate multiple weather sources to 
provide accurate depictions of future weather hazards.  The pilot should be able to recognize the 
weather condition, identify individual weather symbols from other symbols in the same area, and 
decide a course of action (Grasse, Schilke, & Schifele, 2008).  Weather decision-making is enhanced 
only if the weather information presentation has a temporal resolution within the time horizon of 
the weather decision and is spatially accurate.  The interfaces for these weather presentations should 
support rapid interpretation and understanding, thereby attenuating the mental resources needed to 
analyze and interpret weather data.  

Currently, there are no FAA or industry standards for the presentation of MET information in 
the cockpit, which results in large symbology variations between vendors.  Although not an official 
standard, the Radio Technical Commission for Aeronautics (RTCA) provides some guidance for the 
display of weather data in the cockpit (RTCA, 2004).  The lack of standardization can mean that 
some presentations of MET information are suboptimal.  Suboptimal information presentation can 
decrease usability and degrade safety margins.  Therefore, this study seeks to examine the impact of 
weather presentation in the cockpit with the goal of increasing data usability and enhancing safety.  
Previous research has mainly focused on qualitative analyses, without much quantitative data on the 
effects of weather presentations on pilot behavior and decision-making.  This study will provide 
quantitative data that can help the WTIC program to prioritize efforts and focus on important 
human factors issues related to the use of MET displays. 

1.1.  Background 

Little is known about the effects on pilot behavior from variations in weather presentation 
symbology.  Previous research has mostly focused on pilot use of precipitation information.  For 
example, research by Beringer and Ball (2004) compared the situation awareness of pilots using the 
Next Generation Radar (NEXRAD) information at varying levels of resolution.  They found that 
pilots who relied more on high-resolution NEXRAD images attempted to navigate between weather 
more than pilots with low-resolution presentations and windscreen verification did.  This suggests 
that pilots will take higher risks going through weather systems if they are using the NEXRAD high-
resolution system.  There are other issues with NEXRAD presentations as well.  Elgin and Thomas 
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(2004) stress the fact that NEXRAD information may be 5 minutes old when it reaches the weather 
service provider.  It takes another minute or two for the service provider to broadcast the data.  On 
top of that, the cockpit presentation only updates once every 5-7 minutes.  This process results in 
weather data presentations that can be more than 14 minutes old, so that by the time the pilot sees 
the information, it may no longer be accurate.  This is a serious problem when pilots use this 
weather information as a guide to fly between weather areas when in reality the window of 
opportunity to perform the appropriate and safe maneuver has already disappeared.  This temporal 
uncertainty of weather data induces greater risks and can potentially cause damage to the plane and 
passengers if the plane is trapped in a storm.  Furthermore, not only are there latencies in generating 
and presenting the weather data, but any time stamps on the data could be erroneous or misleading 
depending upon how the time stamp is generated. 

Yuchnovicz, Novacek, Burgess, Heck, and Stokes (2001) found that the compelling nature of 
NEXRAD images caused some pilots to depend too heavily on the presentation and ignore other 
sources.  This research also showed that pilots’ use of a graphical radar display does not ensure 
optimal decision-making.  Another NEXRAD study on General Aviation (GA) pilots (Chamberlain 
& Latorella, 2002) found that most pilots felt less than 50% confident in their awareness of the age 
of incoming data.  Nevertheless, some still felt comfortable flying between convective weather in 
Instrument Meteorological Conditions (IMC), a potentially dangerous combination.  In addition, 
NEXRAD does not detect nonconvective hazards, such as clear air turbulence (CAT), which is a 
serious issue in GA (Comerford, 2004).  These issues make it important for the pilot to obtain other 
corroborating information, such as Meteorological Report (METAR) text data and Air Traffic 
Control (ATC) information, so that the accuracy of data can be verified.  

Other researchers have analyzed Pilot Decision Making (PDM) or the overall decision-making 
process of pilots.  The integrated model of naturalistic decision-making developed by Elgin and 
Thomas (2004) looks at three possible PDM modes depending upon the characteristics of the phase 
of flight (e.g., task load and time stress).  This information suggests that pilots under high stress use 
their intuitive processing, personal skill, and pattern matching to reduce cognitive load.  This PDM 
mode must be taken into account when designing optimal weather presentations, because the data 
presentation must be compatible with the user’s level of urgency, stress, and workload.   

Currently, we have little empirical knowledge on how weather symbology presentations support 
pilots during flight, although symbology research has suggested that presentation symbology can 
affect pilot decision-making and behavior.  For example, presentations that deviate from the safety 
color series (green/yellow/red) or other familiar schema has the potential to cause misinterpretation 
of weather data (Arend, 2003).  Hegarty, Canham, and Fabrikant (2010) examined weather map 
salience and display design, and found that display symbology and cue salience can have large effects 
on task performance.  Today’s commercial MET products contain a wealth of weather symbols.  
However, due to the lack of standardization and little empirical data, it is unclear what parts of 
symbology presentations enhance pilot behavior and decision-making and what parts have the 
opposite effect.  Therefore, there is a need to assess the effects of weather presentation symbology 
on pilot behavior to enhance development of presentations for the safe, efficient, and tactical needs 
required to handle adverse weather conditions. 

1.2.  Purpose 

This study explores the effects of cockpit MET presentations on GA pilot weather avoidance, 
weather presentation usage, and workload. 
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2.  METHOD 

2.1.  Participants 

Twenty-five instrument-rated GA pilots participated as volunteers during the simulation.  The 
participants came from a pool of qualified pilots working at the FAA William J. Hughes Technical 
Center (WJHTC) and other FAA facilities.  From this pool of volunteers, we randomly allocated 
each pilot to one of three simulation groups (Groups 1-3).  Before the simulation, each participant 
provided biographical data to determine age, level of pilot experience, and experience with weather 
presentations.  We use the median (middle value of a data set), First Quartile (Q1, median of the 
lower half of the data set), Third Quartile (Q3, the median for the upper half of the data set), and 
Interquartile Range (IQR, the spread of the middle 50% of the values) when reporting age and flight 
data.  For the initial group of 25 pilots, the median age = 58 years (Q1 = 48, Q3 = 64, IQR = 16), 
the median total flight hours = 4000 (Q1 = 1350, Q3 = 5150, IQR = 3800), the median instrument 
flight hours = 300 (Q1 = 100, Q3 = 800, IQR = 700), and the median instrument flight hours 
within the previous six months = 3 (Q1 = 0, Q3 = 21.5, IQR = 21.5).   

The flight hours were estimates given by each pilot before the simulation.  Table 1 shows the 
same data for the three simulation groups after the random allocation procedure. 

Table 1. Simulation Group Data for Age and Flight Hours 

 Group 1 Group 2 Group 3 

Age Median = 64 

Q1 = 59 

Q3 = 69.5 

IQR = 10.5 

Median = 56 

Q1 = 49.5 

Q3 = 61.5 

IQR = 12 

Median = 53 

Q1 = 42 

Q3 = 61.5 

IQR = 19.5 

Total flight hours Median = 3500 

Q1 = 1750 

Q3 = 6330 

IQR = 4580 

Median = 3100 

Q1 = 675 

Q3 = 5150 

IQR = 4475 

Median = 4000 

Q1 = 1600 

Q3 = 5600 

IQR = 4000 

Instrument flight hours Median = 350 

Q1 = 225 

Q3 = 850 

IQR = 625 

Median = 150 

Q1 = 29 

Q3 = 1250 

IQR = 1221 

Median = 300 

Q1 = 175 

Q3 = 575 

IQR = 400 

Instrument flight hours within the 
previous 6 months 

Median = 2 

Q1 = 0 

Q3 = 6.5 

IQR = 6.5 

Median = 2 

Q1 = .5 

Q3 = 21.5 

IQR = 21 

Median = 7.5 

Q1 = 2 

Q3 = 30 

IQR = 28 

Note. Q1 = First Quartile; Q3 = Third Quartile; IQR = Interquartile Range. 
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2.1.1.  Participant Familiarity with Weather Data Sources 

As Table 2 shows, the three simulation groups were adequately matched according to age and 
flight hours.  In this section, we report the group data for the use of external sources (weather data), 
experience with weather systems, and weather training. 

Table 2. External Sources Used by Group 

 
ATC 

Flight 
watch DUAT 

Fore 
flight FSS Websites Garmin Radio NOAA AOPA Flight follow None 

Group 1 1 1 1 0 4 0 0 1 1 1 1 1 

Group 2 1 2 2 1 3 4 1 1 2 0 0 0 

Group 3 3 2 0 0 3 1 0 1 1 0 0 0 

Total 5 5 3 1 10 5 1 3 4 1 1 1 

Note. ATC = Air Traffic Control; DUAT = Direct User Access Terminal; FSS = Flight Service Station; NOAA = National Oceanic 
and Atmospheric Administration; AOPA = Aircraft Owners and Pilot Association. 

2.1.1.1.  External sources used 

The pilots commented that they used many different types of external sources for gathering 
weather information while in flight.  According to our query, 24 out of 25 pilots interviewed used 
more than one external source while in flight.  Only one pilot stated no use of an external source.  
Of the remaining 24 pilots, eight pilots used only one external source while flying, seven pilots used 
two sources, and nine pilots used three or more sources during flight.  The interviewed pilots across 
groups relied on Flight Service Station (FSS) and ATC information the most.  As shown in Table 2, 
Foreflight (Group 2), Garmin (Group 2), Aircraft Owners and Pilot Association (AOPA, Group 1), 
and Flight Following (Group 1) were all used by only one pilot each.  Direct User Access Terminal 
(DUAT) service (two pilots in Group 2, and one pilot in Group 1) and Radio systems (one pilot in 
each group) were all used by three pilots each.  Pre-flight Planning tools, such as Flight Watch (two 
pilots in Group 2, and two pilots in Group 3) and National Oceanic and Atmospheric Administration 
(NOAA) weather (one pilot in Group 1, and one pilot in Group 3, and two pilots in Group 2) were 
all used by four pilots each.  One pilot in Group 1, one pilot in Group 2, and three pilots in Group 3 
used ATC contact.  We saw the use of in-air websites by four pilots in Group 2 and by one pilot in 
Group 3.  Three pilots in Group 3, three pilots in Group 2, and four pilots in Group 1 used FSS 
services. 

2.1.1.2.  Simultaneous use of sources 

Pilots from Group 1 and Group 3 used the most sources simultaneously; with the highest being 
four sources at once.  In Group 1 and Group 3, two pilots used more than one source compared to 
three pilots who used more than one source in Group 2.  One pilot in Group 1 and one pilot in 
Group 2 used four sources simultaneously. 
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2.1.2.  Participant Experience and Training 

2.1.2.1.  Weather system experience 

Six pilots had flight experience with Sirius XM weather presentations and one pilot in the Group 
3 condition was familiar with the WSI radar presentation.  Three pilots in Group 1 and Group 2 
used Sirius XM on the Garmin systems.  Two pilots, one in Group 2 and one in Group 3, had 
G1000 glass NEXRAD display experience.  One pilot in Group 1 was familiar with the GT 330 
MODE S display for weather presentation.  One pilot in Group 1 acknowledged the use of a U.S. 
Air Force display in the cockpit.  We found commercial product experience, such as Flight Watch, 
Foreflight, and Garmin Strike Finder, only in Groups 2 and 3.  The Aircraft Communication 
Addressing and Reporting System (ACARS), Automatic Terminal Information Service (ATIS), 
Automatic Dependent Surveillance-Broadcast (ADS-B), and Flight Information Services-Broadcast 
(FIS-B) information were seen in Group 1 only. 

2.1.2.2.  Weather system training received 

We asked pilots if they had any previous training in weather interpretation or meteorology.  
Roughly, half of the pilots (12 out of 25) had no previous training.  Out of these individuals without 
training, there were three pilots in Group 2, four pilots in Group 3, and five pilots in Group 1.  A 
single Group 3 pilot acknowledged being a tester and evaluator for weather presentations.  One pilot 
in Group 2 and one pilot in Group 3 had aviation weather and radar training for their ratings and 
one pilot in Group 1 reported being self-taught.  The remainder of the pilots had formal training 
experiences.  Six pilots had military recurrent training (U.S. Air Force, U.S. Army, U.S. Coast 
Guard), with Groups 1 and 2 having three and two pilots, respectively.  Only one pilot in Group 3 
had any military training.  The remaining four pilots had meteorology courses in college.  These four 
pilots spread across Group 2 and Group 3 with two in each group.  No pilots in Group 1 had 
formal training other than military. 

2.2.  Equipment 

During this simulation, we used pilot simulation equipment and specialized data collection 
equipment for workload and eye-movement recordings.  In this section, we will report the various 
systems and devices we used for data recordings. 

2.2.1.  Micro-Jet Simulator 

The Micro-Jet simulator, which is housed in the Cockpit Research Facility at the WJHTC, uses a 
13-inch flat screen to show cockpit controls, two 17-inch monitors for controlling simulator flight 
data (technician use), and one large curved monitor to portray the “out-the-window” view (see 
Figure 1).   
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Figure 1. The Micro-Jet cockpit simulator. 

2.2.2.  Eyetracker System 

During simulation runs, participants wore a Mobile Eye Eyetracker, equipped with a Northern 
Digital Inc. (NDI) company Headtracker device.  The Eyetracker from Applied Science Laboratories 
(ASL; refer to the Web site:  www.asleyetracking.com/) was used to assess the number, duration and 
location of fixations on the weather presentations.  The Eyetracker records Point of Gaze (POG) 
and pupil diameter by using near-infrared reflection outlines from the pupil and the cornea1 (ASL 
Inc., 1991).  Eye-movement activity correlates with cognitive workload, and it is used to assess 
operator scan patterns (Ahlstrom & Friedman-Berg, 2006).  In addition to the eye-tracking 
capability, the system includes a head-motion tracker to capture head and neck movements to 
support the Eyetracker analysis.  The sampling rate of the Eyetracker system is 60 Hz. 

2.2.3.  Functional Near-Infrared System 

Pilot cognitive workload was measured during flights using an objective method to record 
functional cortical activity by means of a portable Functional Near-Infrared (fNIR; refer to  
www.biomed.drexel.edu/fNIR/CONQUER/Optical_Brain_Imaging.html) spectroscopy system 
(Izzetoglu, Bunce, Shewokis & Ayaz, 2010; Izzetoglu, Bunce, Izzetoglu, Onaral & Pourrezaei, 2007). 

                                                 
1 During our IRB review, we submitted detailed information on the eye-tracking system to the Aerospace Medicine Division.  The IRB review of 

the eye-tracking system and our intended use of the system did not reveal any unsafe conditions for participants. 
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The fNIR technology uses specific wavelengths of light to measure changes in cortical activity 
through the relative ratios of deoxygenated hemoglobin and oxygenated hemoglobin.  The 
continuous wave fNIR system is connected to a flexible forehead sensor pad that contains four 
light sources (peak wavelengths at 730 nm and 850 nm) and 10 detectors.  This configuration 
generates a total of 16 measurement locations (or voxels) per wavelength.  With two wavelengths 
and dark current recordings for each of the 16 voxels, the system generates 48 measurements for 
each 2 Hz sampling period.  

2.2.4.  Voice Communication System 

During the simulation, an ATC Subject Matter Expert (SME) provided ATC controller services 
to pilots upon request.  The laboratory voice communication system provided a link between the 
pilots and the ATC controller through a Push-To-Talk (PTT) capability.  The voice communication 
system equipment monitors and records the times and durations of pilot and ATC communications 
for subsequent analysis. 

2.2.5.  Software 

The cockpit simulator runs on the Microsoft® Flight Simulator 2004 via the Project Magenta 
workstation control scheme for a Cessna 172 aircraft.  Figure 2 shows the cockpit glass panel and 
the weather presentation display.  All weather scenarios were superimposed on a moving 
geographical terrain map that included a symbol for the aircraft position.  The simulator setup was 
for a single-engine aircraft as this is representative of common GA aircraft. 

 

Figure 2. Cockpit glass and weather presentation display. 
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2.3.  Materials 

2.3.1.  Weather Presentation Cheat Sheet 

During the simulation, we affixed a small card, with a description and illustration of each 
weather data element, to the cockpit.  This is equivalent to a pilot having the user manual for the 
weather presentation available during flight. 

2.3.2.  Weather Presentation Questionnaire 

After completing the simulation flight scenario, the participants rated weather presentation 
features and usability on a weather presentation questionnaire (Appendix A).  These ratings assess 
how participants perceived the presentation of weather information, flight efficiency, weather data 
interpretation, and weather situational awareness.  In addition, participants could add additional 
comments that they deemed important for the simulation. 

2.3.3.  Weather Scenarios 

During the two simulation flights, participants flew a Cessna 172 single-engine GA aircraft under 
Visual Meteorological Conditions (VMC) and Instrument Meteorological Conditions (IMC) from a 
starting point in Pennsylvania.  The pilot managed flight controls and airspace constraints, as well as 
paid attention to the occurrence of hazardous aviation weather conditions.  The scenarios navigated 
a route from the Milton (MIP) very high frequency (VHF) omnidirectional radio range (VOR) in 
Pennsylvania to Bradley International Airport in Connecticut.  All scenarios started in mid-flight.  
There were no take-offs or landings.  For both scenarios, pilots started in VMC but encountered 
IMC 5 minutes into their flight.  At 25 minutes into the flight, the weather conditions changed and 
pilots were under VMC for the remainder of the flight. 

2.4.  Simulation Design 

In this section, we will review the independent and dependent variables as well as the data 
collection and procedures needed to run the simulation. 

2.4.1.  Independent Variables 

2.4.1.1.  Weather presentation 

During the simulation, each pilot group (Groups 1-3) used a different weather presentation 
alternative.  Each of the data types in Table 3 presents different pieces of information to the pilot, 
with each presentation having its own set of symbols and colors.  The data types that we used in the 
present simulation are Precipitation, METAR, SIGMET area, and Lightning.  Pilots could view 
the weather presentation at three different zoom levels; Zoom 1 = 5 nmi, Zoom 2 = 20 nmi, and 
Zoom 3 = 50 nmi (also indicated on the weather display by range rings).  In our weather presentation, 
the update rate was 5 minutes for all weather data elements.  Figure 3 shows the weather presentations 
used by all groups (Groups 1-3) during the simulation. 
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Table 3. Primary Weather Data 

Weather Data  
Weather 
Parameters 

Group 1 Group 2 Group 3 

METAR VFR 
   

MVFR 
   

IFR 
   

LIFR 
   

SIGMET 

   

Lightning 

 <5 min old 

  5-10 min old 

10-15 min old 

 
 

Precipitation 

 
Nine colors 

 

Five colors 

 

Nine colors 

 

Note. METAR = Meteorological Report; SIGMET = Significant Meteorological Information; VFR = Visual Flight Rules;  
MVFR = Marginal Visual Flight Rules; IFR = Instrument Flight Rules; LIFR = Low Instrument Flight Rules. 
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Figure 3. The three weather presentations used by Group 1 (left), Group 2 (middle), and Group 3 (right). 

2.4.1.2.  Precipitation variations 

Precipitation based on radar information depicts the intensity of precipitation overlaid on the 
active map.  This data updates every 5 minutes, on average.  Each of the three presentations differs 
on the number of color codes for intensity.  The Group 1 and Group 3 presentations display nine 
colors for precipitation intensities while the Group 2 presentation uses only five colors. 

2.4.1.3.  METAR variations 

Our simulation also depicts higher level weather information.  The first of these is the METAR, 
which refreshes every 5 minutes.  However, the METAR information generally comes out 
approximately every hour, so while the display refreshes every 5 minutes the METAR information 
might be up to an hour old.  As Table 4 shows, the METAR can be broken down into four weather 
parameters that are based on the flight category. 
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Table 4. Flight Categories 

Note. Table adapted from FAA & NOAA, 2010. 

2.4.1.4.  SIGMET variations 

The SIGMET (SIGnificant METeorological Information) advises of weather potentially 
hazardous to all aircraft.  These advisories are divided into two categories: nonconvective and 
convective.   

The first category is Nonconvective SIGMETs.   

Nonconvective SIGMETs advise of nonconvective weather that is potentially 
hazardous to all aircraft. SIGMETs are unscheduled products that are valid for 
4 hours. However, conditions that are associated with hurricanes are valid for 
6 hours. Unscheduled updates and corrections are issued as necessary. In the 
conterminous U.S., SIGMETs are issued when the following phenomena occur 
or are expected to occur: (a) Severe icing not associated with thunderstorms, 
(b) Severe or extreme turbulence or clear air turbulence (CAT) not associated 
with thunderstorms, (c) Dust storms or sandstorms lowering surface or inflight 
visibilities to below 3 miles, and (d) Volcanic ash.  (FAA, 2012).   

The second category is Convective SIGMETs.   

Convective SIGMETs (WST) are issued in the conterminous U.S. for any of 
the following: (a) Severe thunderstorm (due to Surface Winds greater than or 
equal to 50 knots, Hail at the surface greater than or equal to ¾ inches in 
diameter, and  Tornadoes), (b) Embedded thunderstorms, (c) A line of 
thunderstorms, and (d) Thunderstorms producing precipitation greater than or 
equal to heavy precipitation affecting 40 percent or more of an area at least 
3,000 square miles. Any convective SIGMET implies severe or greater 
turbulence, severe icing, and low-level wind shear. A convective SIGMET may 
be issued for any convective situation that the forecaster feels is hazardous to 
all categories of aircraft.  (FAA, 2012).   

The SIGMET information updates every 4 hours, unless a hurricane is present then it is updated 
every 6 hours.  Convective SIGMETs are updated hourly.  However, as stated previously, our 
presentation updates every 5 minutes regardless of new information.  Each of the three presentations 
(Group 1, Group 2, and Group 3) depicts the SIGMET in different ways (as shown in Table 3).  The 
Group 1 presentation uses a yellow dashed line, Group 2 shows a magenta solid outline (filled with 
magenta hash marks), and Group 3 shows a red solid outline (semitransparent red infill). 

Category Ceiling  Visibility 

Low Instrument Flight Rules 
LIFR* 

below 500 feet AGL And/Or less than 1 mile 

Instrument Flight Rules 
IFR  

500 to below 1,000 feet AGL And/Or 1 mile to less than 3 miles 

Marginal Visual Flight Rules 
MVFR  

1,000 to 3,000 feet AGL And/Or 3 to 5 miles 

Visual Flight Rules 
VFR

+
  

greater than 3,000 feet AGL And/Or greater than 5 miles 
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2.4.1.5.  Lightning variations 

Pilots need to be aware of lightning strikes in the area where they are flying.  For the presentations, 
the lightning information is updated every 1-2 minutes.  All three variations present lightning 
information in different ways.  The Group 1 presentation shows lightning information by a 
“lightning bolt” symbol, Group 2 uses a magenta dot, and Group 3 uses a yellow “X.” 

2.4.2.  Dependent Variables 

To evaluate whether variations in weather presentation symbology affects pilot decision-
making and flight behavior, we captured dependent variables in the following categories: Decision-
making (weather deviations), Weather Avoidance (distance to weather), Weather Presentation Usage 
(zoom levels), Communication (pilot/ATC PTT), System Performance (altitude and heading), Eye 
Movements—fixations and saccades on Areas of Interests (AOIs)—and Workload (fNIR oxygenation 
changes).  In Table 5, we provide a list of the dependent measures and a short description. 

Table 5. Dependent Variables 

# VARIABLE DESCRIPTION 

1 Weather deviations An important assessment in this study is whether presentation symbology 
affects pilot weather-deviation behavior.  In the absence of weather, pilots 
can fly a straight-line path from start to destination.  However, in both 
flight scenarios, pilots are presented with weather data that GA pilots 
must take into consideration when choosing their course.  Therefore, an 
effective deviation measure is the lat/long difference between a straight-
line flight from start to destination and the actual course flown by pilots.  
Any difference in the lat/long positions is due to the pilot’s decision to 
deviate around unfavorable weather conditions.  During the test scenarios, 
the aircraft’s actual lat/long position is recorded and compared to the 
lat/long position for a straight-line course (once every second).  The 
difference between these two lat/long positions provides a weather 
deviation distance. 

2 Distance to weather In addition to a pilot’s weather-deviation behavior, we want to assess how 
close each pilot flies in relation to intense precipitation areas.  For this 
assessment, we chose the ‘yellow’ precipitation intensities as they are the 
same and start at 30 dBZ in the Groups 1-3 weather presentations (see 
Table 2).  In Scenario 2 and Scenario 3, there are two different 
precipitation areas that we will measure the distances to from the aircraft 
position.  The first precipitation areas are the smaller precipitation “cells” 
located in front of the aircraft at scenario start-up.  The locations of these 
smaller cells are shown in Figure 5 for Scenarios 2 and 3.  The second 
precipitation area in each scenario is the “line” of precipitation to the 
West of the aircraft’s starting position, also shown in Figure 5.  We will 
report the mean distances to weather for Groups 1-3 from the aircraft 
position as the mean distance to the cells and the line.  During each 
scenario run, we will measure the closest distance from the aircraft 
position to the cells and the line once a second.  (Current guidelines state 
hazardous weather should be avoided by at least 20 statute miles (FAA & 
NOAA, 1983). 

 (table continues) 
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Table 5. Dependent Variables (continued) 

# VARIABLE DESCRIPTION 

3 Weather presentation zoom During each simulation run, the pilot can adjust the zoom level for the 
weather presentation.  Three different zoom levels are available; Zoom 
1 = 5 nautical miles (nmi), Zoom 2 = 20 nmi, and Zoom 3 = 50 nmi.  The 
weather zoom distance will always be displayed on a bar (in nmi) in the 
lower right corner of the display, and as range rings around the aircraft 
position symbol (Figure 4). 

4 Pilot/ATC communications The number and duration of pilot/controller PTT communications.  
Communications can be indicators of workload, as well as providing 
detailed weather and flight inquires by pilots. 

5 Altitude and heading changes 
(system performance measures) 

Aircraft position, mean altitude, and mean heading during a scenario. 

6 Eye-movement metrics The number and duration of fixations, the number and distance for 
saccades, the pupil diameter, and the eye movement workload derived 
from the eyetracker POG recordings. 

7 Visual areas of interest (AOI) The number and durations of fixations and the number and saccade 
distances on the cockpit out-the-window, glass display, weather 
presentation, and cockpit console AOIs. 

8 Workload The oxygenation changes captured by the fNIR system. 

Note. GA = General Aviation; lat/long = Latitude/Longitude; FAA = Federal Aviation Administration; NOAA = National Oceanic and 
Atmospheric Administration; PTT = Push-To-Talk; POG = Point of Gaze; fNIR = Functional Near-Infrared. 

2.4.2.1.  System performance measures 

During the simulation flights, several parameters from the cockpit simulator system (Flight 
Simulator 2004 and the Magenta Instructor Station) were recorded to calculate a number of 
dependent measures that are associated with pilot flight behavior.  We used the following dependent 
measures: 

1. Altitude - The height of the airplane above mean sea level as displayed on the altimeter. 

2. Heading - The direction where the airplane is pointed. 

3. Playback timer and time compression setting - The time of each event in the overall flight 
scenario. 

2.4.2.2.  Video and audio recordings 

All simulation runs were audio and video recorded.  By recording participant runs on video, 
researchers have the ability to reexamine simulation flight events.  In addition, we recorded the PTT 
communication between the pilot and the controller (ATC SME). 

2.4.2.3.  Eye-movement data 

We recorded the POG data to derive the fixations and saccades on several predefined AOIs 
associated with the actual weather presentation, the cockpit out-the-window view, the glass cockpit 
display, and the cockpit console.  This is an important assessment in light of previous findings that 
some pilot weather presentations cause suboptimal viewing behavior (Beringer & Ball, 2004).  The 
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dependent measures that we derived from the POG data were the number of fixations, fixation 
durations, number of saccades, saccade distance, pupil diameter, and eye-movement workload 
(EMW).  The EMW is a common measure used in research of ATC controller visual scanning 
(Stein, 1992; Willems, Allen, & Stein, 1999).  For the definition and calculation of fixations and 
saccades, see Ahlstrom and Friedman-Berg (2006). 

2.4.2.4.  Functional near- infrared spectroscopy 

The pilots wore an fNIR forehead-sensor pad during simulation flights to measure changes in 
the relative ratios of deoxygenated hemoglobin and oxygenated hemoglobin during brain activity. 

2.4.2.5.  Zoom levels 

The pilots had the ability to zoom in on weather areas or routes via a button next to the 
presentation panel.  The pilot could choose from three different Zoom levels: Zoom 1 = 5 nmi, 
Zoom 2 = 20 nmi, and Zoom 3 = 50 nmi.  For all simulation flights, we recorded each zoom 
activation and its associated duration. 

2.5.  Procedure 

2.5.1.  IRB Informed Consent Form and Biographical Information 

Prior to the simulation, each pilot read and signed an Institutional Review Board (IRB) 
Informed Consent form, which describes the study, data confidentiality, and participant rights.  
Participants had the right to withdraw from the study at any time.  After this, we asked the pilots 
about their flight experience including age, number of hours flown, number of instrument hours, 
and weather presentation experience. 

2.5.2.  Flight Briefing 

A pilot SME provided a short briefing of what to expect during the simulation.  During this 
briefing, each pilot was given the specifics of the proposed routes, airspace, surrounding VORs, and 
airports (the pilot had planned the routes during the previous day).  Each pilot was briefed about the 
weather by the SME and was given a convective SIGMET to read.  This convective SIGMET stated 
that a “significant squall-line thunderstorm associated with a fast moving cold front extending from 
Pittsburgh to Maine is moving southeast at 25 knots.  This front has scattered, moderate to heavy 
thunderstorms and IFR areas below 200 AGL.”  Pilots were told that they were aware of the 
weather and had received a preflight weather briefing but had chosen to proceed with their flight 
plan from Milton VOR (MIP) to Bradley International Airport (KBDL) as depicted on a sectional 
map.  Pilots were told to fly the scenario as if they were flying Visual Flight Rules (VFR) with two 
passengers aboard while receiving flight following from New York Center.  For purposes of the 
study, the ATC at New York Center had a radar malfunction, making ATC unable to provide 
vectors around the weather.  The pilots had to avoid the weather on their own using the cockpit 
weather presentation.  Pilots were also informed that their NEXRAD weather presentation had no 
time stamp, so their precipitation information could be up to 10-17 minutes old (just like the real 
world).  The SME instructed the pilots that they had to use the autopilot while flying and that they 
were not bound to their original proposed route.  However, pilots had to stay in the air at all times and 
could not turn around or land.  They were also instructed to obey the Federal Aviation Regulation 
(FAR) to the best of their ability, and if encountering IMC, they were instructed to contact ATC 
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to request an IFR flight plan.  Finally, the SME stressed that although the pilot would encounter 
weather along the route, there would always be several safe alternatives for deviations around the 
weather.  Pilots would never risk being “boxed in” by adverse weather conditions. 

2.5.3.  Simulator Briefing 

In addition to the regular briefing about the flight procedures and the scenarios, the SME 
informed pilots about the constraints of the simulation system.  First, pilots were told that flying 
the Micro-Jet simulator was a little bit different from flying a Cessna 172.  However, this difference 
would be unimportant because pilots would be using the autopilot during flight and there would be 
no take-offs or landings.  Second, pilots were instructed that the out-the-window view would not 
always correspond fully with the weather depiction on the cockpit weather presentation.  Again, 
this discrepancy would have no major importance because pilots would encounter IMC early into 
their flight.  Pilots were instructed to always rely on their cockpit weather presentation.  If the 
cockpit weather presentation showed a precipitation cell 10 miles ahead of the aircraft, which did 
not fully correspond with the out-the-window view, pilots were instructed to always rely on the 
weather presentation and act accordingly.  As an initial orientation of the cockpit weather display, 
pilots were briefed on the weather data elements by reviewing the weather presentation cheat sheet. 

At the end of this briefing, the SME demonstrated the basic aircraft controls on the cockpit 
console.  The SME instructed the pilot how to change radio frequencies and how to perform 
autopilot operations.  Pilots were also instructed not to touch or move a sensor, for the eyetracker 
system, located on the cockpit windshield and not to move the fNIR headband and eyetracker 
headset, once placed on the pilot and calibrated by the researchers.  After this briefing, the SME 
and the pilot relocated from the briefing room to the Micro-Jet cockpit simulator. 

2.5.4.  Simulation Scenarios 

2.5.4.1.  Practice scenario – Scenario 1 

During this initial training session, participants flew a practice scenario designed to allow 
participant familiarization with the Cessna 172 simulator and the weather display.  The pilots took 
off from Atlantic City Airport (ACY) and flew in the vicinity of NJ and PA to get used to the 
cockpit controls and autopilot mode.  During the practice run, the pilot SME was seated next to the 
participant to answer questions and guide participants as they operated the flight controls.  The SME 
also demonstrated the weather presentation and how to use the three different zoom levels.  As part 
of the weather presentation training, pilots were instructed to fly a course that depicted the larger 
weather scenario on the cockpit weather display.  Pilots were asked to point out the four weather 
data elements on the weather presentation and to explore the different views from each zoom level.  
This practical weather presentation training continued until the pilot SME was assured that pilots 
fully understood and could demonstrate the use of the weather presentation and the zoom levels.  
No data collection occurred during the practice scenario. 

2.5.4.2.  Test scenarios – Scenarios 2 and 3 

After completion of the practice scenario, pilots were asked to fly a route from the MIP in 
Pennsylvania to KBDL in Connecticut (see Figure 4).  The pilots were aware that they could not 
reach their destination within the time allotted due to the speed restrictions of the Cessna 172.  
The flight was therefore broken into two separate flight scenarios, Scenario 2 and Scenario 3.  The 
presentation order of these two test scenarios was counterbalanced within each group.  While half 



 

16 

the pilots in a group flew Scenario 2 first and then Scenario 3, the remaining pilots in the group flew 
the two scenarios in the opposite order.  Each flight scenario lasted for 25 minutes. 

 

Figure 4. The routes for Test Scenario 2 (red) and Scenario 3 (blue). 

2.5.4.2.1. Scenario 2 

Scenario 2 was the first leg of the route; the pilots flew from MIP over the Lake Henry VOR 
(LHY) and up to the Huguenot VOR starting at an altitude of 2500 ft (after 5 minutes, the altitude 
increased due to an IFR clearance).  It is depicted in red in Figure 4, and it is illustrated on the 
weather presentation in Figure 5.  During this scenario, the pilots encountered precipitation cells 
while between MIP and LHY.  The pilots were unable to make the flight all the way to the 
destination KBDL within the allotted time. 
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Figure 5. The aircraft position at scenario start-up and the Bradley International Airport (KBDL) 
destination for Scenario 2 (left) and Scenario 3 (right). 

2.5.4.2.2. Scenario 3 

Scenario 3 was the second leg of the route; the pilots flew from the Huguenot (HUO) VOR up 
to KBDL starting at an altitude of 5500 ft (after 5 minutes, the altitude changed due to an IFR 
clearance).  This route was illustrated in blue in Figure 4, and it is illustrated on the weather 
presentation in Figure 5.  In this scenario, pilots encountered a small line of precipitation cells while 
between HUO and Dutchess County Airport (KPOU) in Poughkeepsie, NY.  Like Scenario 2, the 
pilots were unable to make the flight all the way to the destination KBDL within the allotted time. 

2.5.5.  Data Collection Procedures 

Before the start of each flight scenario, the pilots were fitted with the fNIR and the eye-tracking 
equipment, which they wore during their simulation flights.  Next, the researchers calibrated the 
Eyetracker by means of a standard nine-dot matrix presented on the cockpit glass display.  Once the 
Eyetracker was calibrated and the pilot was ready to fly, the simulation scenario began.  After the 
flight scenario ended, the participants completed the Weather Presentation Questionnaire (see 
Appendix A).  After the questionnaire, the research team had a final debriefing with the pilots.  The 
pilots were asked about the simulation in general and to comment on the usability of the weather 
presentation elements including the background map with range rings.  Finally, pilots were asked 
about any enhancements in procedure or cockpit presentation that would be useful for future 
simulations. 
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2.5.6.  Data Analysis 

The core tenets of NextGen are operational and safety improvements for all aspects of the 
future NAS.  Assessing improvements amounts to finding effects and measuring the sizes of those 
effects.  In some cases, empirical data can show an operationally important effect on operator 
performance.  In other cases, empirical data can highlight the absence of an effect on operator or 
system performance.  To be meaningful, this NextGen effect analysis requires credible and 
consistent methods.  Traditionally, researchers have used the Null Hypothesis Significance Testing 
(NHST) framework.  The goal of this framework is to unveil “statistically significant” effects by 
rejecting a null hypothesis of no effect.  Unfortunately, the NHST testing framework is asymmetric; 
researchers can only reject the null but never accept evidence for the null.  Using the NHST 
framework, researchers can only infer the probability (e.g., p = .021) of getting an outcome, or more 
extreme values, given that the null hypothesis is true, or p(data|null).  Regrettably, this implies that 
significance tests overstate the evidence against the null.  We need to assess the null hypothesis (no 
effect) against an alternative hypothesis (effect), and not consider the null in isolation.  In addition to 
being asymmetric, the NHST framework is also inconsistent.  If the null is false, significance tests 
are consistent and the probability of correctly rejecting the null increases with an increasing number 
of observations.  If the null is true, however, the inability to infer evidence for the null implies that 
NHST significance tests will mistakenly reject the null and overstate the evidence against the null 
(despite an increasing number of observations).  Asymmetric and inconsistent analysis methods 
strike us as very troublesome, and they provide a feeble foundation for NextGen research.  

In this study, we perform Bayesian model comparison on outcome variables for the three pilot 
groups.  Because this study is specifically tailored for an assessment of the presence of effects (i.e., 
differences in outcome variables between the three groups), we use Bayesian model comparison.  
In the model comparison approach, we use a statistic called the Bayes factor (BF).  The Bayes factor 
is the overall likelihood of the data for one model relative to the overall likelihood of the data for the 
other model.  Bayesian parameter estimation, on the other hand, provides more informative results 
with complete distributions of credible values for group means, effect sizes, standard deviations, and 
data normality.  However, parameter estimation is more useful in situations where we are assessing 
the operational impact of effects.  That is, when the specific goal of the study is to use parameter 
estimates for implementing or changing current practices in relation to some operationally important 
factor.  

We are comparing two models: the null and the alternative.  The null model states that the 
difference of the means is zero, whereas the alternative model states that the difference of the means 
is not equal to zero.  Using Bayesian statistics, we can compute the probability of a hypothesis 
conditionally on observed data, or p(hypothesis|data).  More importantly, unlike the NHST 
framework, Bayesian tests allow the researcher to state evidence for the null.  For our model 
comparisons, we use the Jeffrey-Zellner-Siow (JZS) Bayes Factor (BF) t-test developed by Rouder, 
Speckman, Sun, Morey, and Iverson (2009).  In doing so, we first compute the traditional t-statistic 
that, together with the number of observations, are used in the formula to compute the JZS BF.  For 
all tests, we use the objective JZS prior (Cauchy distribution on effect size) with the scale factor, r, 
set to 1.  To see how the conventional t-statistic, the number of observations, and the degrees of 
freedom are used in the JZS Bayesian model comparison t-test, see the formula in Rouder et al. 
(2009).  For simplicity, we will refer to this JZS Bayes factor as BF throughout the result section.  In 
using Bayesian model comparison for the null versus the alternative model, we have the formula, 



 

19 

 

where the Posterior odds = Prior odds x BF.  The BF is directly interpretable as an odds ratio in 
the form null/alternative.  Therefore, a BF greater than 1 favors the null, and a BF less than 1 favors 
the alternative.  A BF of exactly 1 prefers neither the null nor the alternative.  As another example, 
when the BF is 1.5, this indicates that the data are 1.5 times more likely to have occurred under the 
Modelnull than under the Modelalternative.  In addition to allowing inferences about the presence of 
effects, the BF can be expressed in terms of categories of evidential strength (see Table 6); these 
categories were as originally proposed by Jeffreys (1961). 

Table 6. Classification Scheme for the Bayes Factor 

Bayes factor BF Interpretation 

>  100 Extreme evidence for the null (no effect) 

30 - 100 Very Strong evidence for the null 

10 - 30 Strong evidence for the null 

3 - 10 Substantial evidence for the null 

1 - 3 Anecdotal evidence for the null 

 1  No evidence 

1/3 - 1 Anecdotal evidence for the alternative (effect) 

1/10 - 1/3 Substantial evidence for the alternative 

1/30 - 1/10 Strong evidence for the alternative 

1/100 - 1/30 Very strong evidence for the alternative 

<  1/100 Extreme evidence for the alternative 

Note. Table adapted from “Why Psychologists Must Change The Way They Analyze Their Data: The Case of Psi: 
Comment on Bem,” by Wagenmakers, Wetzels, Borsboom, & van der Maas (2011). Unpublished manuscript. 

 

Unlike NHST “significance” tests, in Bayesian statistics, there is no drawback or penalty in 
computing and reporting multiple tests (Morey & Rouder, 2011).  Also, because we do not compute 
p values (in the NHST sense), there is no need to make corrections for multiple comparisons 
(Dienes, 2011; Kruschke, 2010).  
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We present results for group comparisons on outcome variables.  Each data graph presents the 
mean result for each of the three pilot groups.  We compare the groups to see whether the BF 
supports the null or the alternative model.  If a comparison favors the null model, it shows evidence 
that the weather presentation symbology does not have an effect on that particular dependent 
variable.  On the other hand, if a group comparison favors the alternative model, it shows evidence 
that the weather presentation symbology affects that particular variable.  For each comparison, we 
provide the number of subjects in each group (e.g., n = 8), the conventional t-statistic (e.g., t = 1.12), 
and the BF (e.g., BF = 1.95).  In addition, we describe the BF for each comparison in terms of its 
categorical strength (e.g., a BF = 2.8 provides “anecdotal” evidence for the null). 

3.  RESULTS 

In this section, we present the simulation results in the following categories: System performance 
(aircraft and instrument panel data), Communication (pilot/ATC PTT), Decision-making (deviations), 
Weather presentation usage (visual scanning behavior, zoom usage), Weather avoidance (distance to 
hazardous weather), and Workload (fNIR oxygenation changes). 

3.1.  Weather Deviations 

Figure 6 shows the mean weather deviation distance for Groups 1-3 during Scenario 2 (first leg 
of route).  The “error bars” in Figure 6 represent one standard error (SE) of the mean (we used one 
SE of the mean for all subsequent graphs).  The mean deviation distances for Group 1 (n = 8) and 
Group 2 (n = 9) provided “substantial” evidence for the alternative hypothesis, t = 3.34, BF = 0.10.  
The mean deviation distances for Groups 1 and 3 (n = 8) were similar, providing anecdotal evidence 
for the null hypothesis, t = .82, BF = 2.28.  The mean deviation distances for Groups 2 and 3 
provided anecdotal evidence for the alternative, t = 2.08, BF = 0.64. 

 

Figure 6. Mean deviation distances for Scenario 2. 
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Figure 7 shows the mean deviation distance for Groups 1-3 during Scenario 3 (second leg of 
route).  Contrary to the result for Scenario 2, the mean deviation distances were very similar and all 
group comparisons provided anecdotal evidence for the null: Groups 1 and 2, t = .46, BF = 2.8; 
Groups 1 and 3, t = .17, BF = 2.94; and Groups 2 and 3, t = .31, BF = 2.92. 

 

Figure 7. Mean deviation distances for Scenario 3. 

3.2.  Distance to Weather 

Figure 8 shows that pilots had similar behavior in how close they flew to the precipitation cells 
during Scenario 2.  The mean distances to cells for all three groups were roughly 14 nautical miles.  
All group comparisons of the distances to cells provided anecdotal evidence for the null: Group 1 
(n = 8) and Group 2 (n = 9), t = .24, BF = 2.97; Groups 1 and 3 (n = 8), t = .57, BF = 2.63; and 
Groups 2 and 3, t = .88, BF = 2.24. 

 

Figure 8. Mean distance to cells during Scenario 2. 
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The outcome for Scenario 3 (see Figure 9) was similar to the outcome for Scenario 2.  The mean 
distances to cells for all three groups were roughly 15 nautical miles.  All group comparisons of the 
distances to cells provided anecdotal evidence for the null: Groups 1 and 2, t = .62, BF = 2.6; 
Groups 1 and 3, t = .33, BF = 2.84; and Groups 2 and 3, t = .25, BF = 3.0. 

 

Figure 9. Mean distance to cells during Scenario 3. 

The pilots in all groups (Groups 1-3) kept a similar distance from the precipitation line.  Figure 
10 shows the mean distances to the line for Scenario 2.  All distances were roughly 40 nautical miles 
and group comparisons provided anecdotal evidence for the null: Groups 1 and 2, t = .22, BF = 
2.98; Groups 1 and 3, t = .67, BF = 2.50; and Groups 2 and 3, t = 1.08, BF = 1.95.  

 

Figure 10. Mean distance to line during Scenario 2. 
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The result for Scenario 3 (see Figure 11) was similar to the Result for Scenario 2.  All distances 
were roughly 40 nautical miles and group comparisons provided anecdotal evidence for the null: 
Groups 1 and 2, t = .17, BF = 3.0; Groups 1 and 3, t = .82, BF = 2.29; and Groups 2 and 3, t = 
1.40, BF = 1.44. 

 

Figure 11. Mean distance to line during Scenario 3. 

3.3.  Weather Presentation Zoom 

Figure 12 and Figure 13 show the mean number of zoom activations and zoom durations for 
Scenarios 2 and 3, respectively.  The zoom usage was very similar among the three groups.  Zoom 2 
was used most frequently and was displayed for longer durations compared to Zoom 1 and Zoom 2.  
Due to the small activation numbers for Zoom 1 and Zoom 3, we performed group comparisons 
for Zoom 2 only. 

  

Figure 12. Mean number of weather presentation zoom activations (left) and zoom durations (right) 
for Scenario 2.  Zoom 1 = 5 nmi, Zoom 2 = 20 nmi, and Zoom 3 = 50 nmi. 
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Figure 13. Mean number of weather presentation zoom activations (left) and zoom durations (right) 
for Scenario 3.  Zoom 1 = 5 nmi, Zoom 2 = 20 nmi, and Zoom 3 = 50 nmi. 

For Scenario 2, all group comparisons of the mean number of activations provided anecdotal 
evidence for the null: Groups 1 and 2, t = 0.30, BF = 2.93; Groups 1 and 3, t = .25, BF = 2.90; and 
Groups 2 and 3, t = .12, BF = 3.0.  Similarly, all group comparisons of the mean zoom durations 
provided anecdotal evidence for the null: Groups 1 and 2, t = 0.21, BF = 2.98; Groups 1 and 3, t = 
1.17, BF = 1.76; and Groups 2 and 3, t = .62, BF = 2.60. 

For Scenario 3, all group comparisons of the mean number of activations provided anecdotal 
evidence for the null: Groups 1 and 2, t = 0.26, BF = 2.95; Groups 1 and 3, t = .33, BF = 2.84; and 
Groups 2 and 3, t= .05, BF = 3.0.  In addition, all group comparisons of the mean zoom durations 
provided anecdotal evidence for the null: Groups 1 and 2, t = .06, BF = 3.0; Groups 1 and 3, t = .01, 
BF = 2.97; and Groups 2 and 3, t = .07, BF = 3.0. 

3.4.  Air Traffic Control Communications 

During the test scenarios, pilots communicated with New York Center ATC.  It was always the 
pilot who initiated the contact with ATC.  In Figures 14, 15, 16, and 17, we summarize the number of 
contacts (communications) per pilot and we present the computed duration for each communication.  
Figure 14 shows the mean number of ATC contacts during Scenario 2.  Group 1 had a slightly larger 
number of contacts, but all group comparisons provided anecdotal evidence for the null: Group 1 
(n = 7) and Group 2 (n = 9), t = 1.38, BF = 1.44; Group 1 and Group 3 (n = 8), t = .98, BF = 2.0; 
and Group 2 and Group 3, t = .45, BF = 2.8. 
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Figure 14. Mean number of ATC communications during Scenario 2. 

The result for Scenario 3 (see Figure 15) was very similar to the result for Scenario 2.  Group 1 
had a slightly higher number of ATC contacts, but all group comparisons provided anecdotal 
evidence for the null: Group 1 and Group 2, t = .51, BF = 2.74; Group 1 and Group 3, t = .78, BF 
= 2.36; and Group 2 and Group 3, t = .16, BF = 3.0. 

 

Figure 15. Mean number of ATC communications during Scenario 3. 
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The duration of each ATC contact was very similar among the three groups.  Figure 16 shows 
the mean pilot/ATC contact duration for Scenario 2.  All group comparisons provided anecdotal 
evidence for the null: Group 1 and Group 2, t = .12, BF = 2.94; Group 1 and Group 3, t = .48, BF 
= 2.65; and Group 2 and Group 3, t = .73, BF = 2.46. 

 

Figure 16. Mean ATC contact duration for Scenario 2. 

Figure 17 shows the mean communication duration for Scenario 3.  The result was very similar 
to the mean contact durations for Scenario 2.  All group comparisons provided anecdotal evidence 
for the null: Group 1 and Group 2, t = .36, BF = 2.88; Group 1 and Group 3, t = .58, BF = 2.61; 
and Group 2 and Group 3, t = .07, BF = 3.0. 

 

Figure 17. Mean ATC contact duration for Scenario 3. 
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3.5.  Altitude and Heading Changes 

During Scenario 2 and Scenario 3, pilots deviated from their “planned” course to avoid 
precipitation areas.  Apart from the deviation distances from a “straight-line” course (from 
scenario start to scenario destination), we were also interested in analyzing pilot altitude and 
heading changes.  Figure 18 shows the mean altitude for all groups (Groups 1-3) during Scenario 2.  
The mean altitude was almost identical for all three groups and all group comparisons provided 
anecdotal evidence for the null: Group 1 (n = 8) and Group 2 (n = 9), t = .20, BF = 3.0; Group 1 
and Group 3 (n = 8), t = .001, BF = 2.97; and Group 2 and Group 3, t = .07, BF = 3.0. 

 

Figure 18. Mean altitude for Scenario 2. 

Figure 19 shows the mean heading for Groups 1-3 during Scenario 2.  The mean heading was 
almost identical for all three groups and all group comparisons provided anecdotal evidence for the 
null: Group 1 and Group 2, t = .07, BF = 3.0; Group 1 and Group 3, t = .002, BF = 2.97; and 
Group 2 and Group 3, t = .07, BF = 3.0. 

 

Figure 19. Mean heading for Scenario 2. 
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Figure 20 shows the mean altitude for Groups 1-3 during Scenario 3.  The mean altitude was 
similar for all three groups and all group comparisons provided anecdotal evidence for the null: 
Group 1 and Group 2, t = .77, BF = 2.42; Group 1 and Group 3, t = .54, BF = 2.66; and Group 2 
and Group 3, t = .31, BF = 2.92. 

 

Figure 20. Mean altitude for Scenario 3. 

Figure 21 shows the mean heading during Scenario 3.  The mean heading was slightly larger for 
Group 1 compared to Group 2 and Group 3.  Group comparisons between Group 1 and Group 
2, t = 1.67, BF = 1.08, and Group 2 and Group 3, t = 1.04, BF = 2.01, provided anecdotal evidence 
for the null.  However, the comparison between Group 1 and Group 3, t = 2.08, BF = .66, provided 
anecdotal evidence for the alternative. 

 

Figure 21. Mean heading for Scenario 3. 
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3.6.  Eye-Movement Metrics 

In this section, we analyze and present eye-movement data.  Because our eye-tracking system 
cannot be used with participants wearing eyeglasses, we had only 15 participants that could 
participate in the eye-movement recordings (15 out of 25).  Furthermore, due to hardware failures, 
we were unable to collect eye-movement data during all simulation runs.  Therefore, in the eye-
movement result presentation, we indicate the number of pilots (n) for each Group that was 
included in each analysis. 

As objective measures of cognitive and visual workload, researchers have used different eye- 
movement parameters that correlate with cognitive demands.  The most commonly used metrics are 
blink rate and duration, pupil diameter, saccadic extent, fixation frequency, and dwell time.  Previous 
research has found that blink rate, blink duration, and saccade duration all decrease; whereas pupil 
diameter, the number of saccades, and the frequency of long fixations all increase with increased 
cognitive workload (Ahlstrom & Friedman-Berg, 2006).  In addition to serving as proxies for 
cognitive and visual workload, we use these parameters to analyze pilot scanning behavior. 

3.6.1.  Fixations 

Figure 22 shows the mean number for all group (Groups 1-3) fixations during Scenario 2.  The 
mean number of fixations for Group 3 was higher than the number of fixations for Group 1 (n = 3) 
and Group 2 (n = 6).  A comparison between Group 1 and Group 2 showed anecdotal evidence for 
the alternative, t = 1.83, BF = .86.  Comparing Group 1 and Group 3 (n = 6) provided anecdotal 
evidence for the null, t = 1.09, BF = 1.56.  The comparison of Group 2 versus Group 3 provided 
anecdotal evidence for the alternative, t = 2.68, BF = .32. 

 

Figure 22. Mean number of fixations for all groups (Groups 1-3) during Scenario 2. 
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Figure 23 shows the mean number for all group (Groups 1-3) fixations during Scenario 3.  Again, 
Group 3 had the highest mean number of fixations followed by Group 2 and Group 3.  However, 
all group comparisons provided anecdotal evidence for the null: Group 1 and Group 2, t = .65, BF 
= 1.92; Group 1 and Group 3, t = 1.47, BF = 1.17; and Group 2 and Group 3, t = .52, BF = 2.24. 

 

Figure 23. Mean number of fixations for all groups (Groups 1-3) during Scenario 3. 

3.6.2.  Areas of Interest 

In addition, we analyzed fixations on several predefined AOIs.  The AOIs corresponded to the 
area covering the cockpit out-the-window view, the cockpit glass display, the weather presentation, 
and the cockpit console.  

3.6.2.1.  Cockpit out-the-window AOI 

Figure 24 shows the mean number of fixations on the AOI for the cockpit out-the-window for 
Scenario 2.  The comparison between Group 1 (n = 2) and Group 2 (n = 4) provided anecdotal 
evidence for the alternative, t = 1.94, BF = .82.  The comparison between Group 1 and Group 3  
(n =5) showed anecdotal evidence for the null, t = 1.04, BF = 1.5, as did the comparison between 
Group 2 and Group 3, t = 1.26, BF = 1.41. 

 

Figure 24. Mean number of fixations on the cockpit out-the-window AOI during Scenario 2. 
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Figure 25 shows the mean number of fixations of the cockpit out-the-window AOI for Scenario 3.  
All group comparisons provided anecdotal evidence for the null: Group 1 and Group 2, t = 1.16, BF 
= 1.39; Group 1 and Group 3, t = .76, BF = 1.74; and Group 2 and Group 3, t = .26, BF = 2.45. 

 

Figure 25. Mean number of fixations on the cockpit out-the-window AOI during Scenario 3. 

Figure 26 shows, the fixation durations of the cockpit out-the-window AOI for Scenario 2.  All 
comparisons showed anecdotal evidence for the null: Group 1 and Group 2 (n = 5), t = .19, BF = 
2.08; Group 1 and Group 3, t = .77, BF = 1.73; and Group 2 and Group 3, t = .84, BF = 1.94. 

 

Figure 26. Mean fixation durations on the cockpit out-the-window AOI during Scenario 2. 
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Figure 27 shows the fixation durations on the cockpit out-the-window AOI for Scenario 3.  
Comparisons between Group 1 and Group 2 (n = 4), t = 1.83, BF = .88, and Group 1 and Group 3, 
t = 2.12, BF = .7, showed anecdotal evidence for the alternative.  The comparison between Group 2 
and Group 3 showed anecdotal evidence for the null, t = 1.0, BF = 1.68.  

 

Figure 27. Mean fixation durations on the cockpit out-the-window AOI during Scenario 3. 

3.6.2.2.  Cockpit glass display AOI 

Figure 28 shows the mean number of fixations on the cockpit glass display AOI for Scenario 2.  
Group 3 (n = 5) had the largest number of fixations followed by Group 1 (n = 3) and Group 2 (n = 
5).  Comparisons between Group 1 and Group 2 provided anecdotal evidence for the null, t = 1.2, 
BF = 1.43, as did the comparison between Group 1 and Group 3, t = 1.4, BF = 1.23.  The 
comparison between Group 2 and Group 3, however, provided strong evidence for the 
alternative, t = 4.35, BF = .06. 

 

Figure 28. Mean number of fixations on the cockpit glass display AOI during Scenario 2. 
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Figure 29 shows the mean number of fixations on the cockpit glass display AOI for Scenario 3.  
Although Group 3 had a higher number of fixations (due to intragroup variability) compared to 
Group 1 and Group 2, all comparisons provided anecdotal evidence for the null: Group 1 (n = 2) 
and Group 2 (n = 4), t = .07, BF = 2.06; Group 1 and Group 3 (n = 6), t = .64, BF = 1.86; and 
Group 2 and Group 3, t = .51, BF = 2.25. 

 

Figure 29. Mean number of fixations on the cockpit glass display AOI during Scenario 3. 

Figure 30 shows mean fixation durations for the cockpit glass display AOI for Scenario 2.  Again, 
Group 3 (n = 5) had longer fixation durations compared to Group 1 (n = 3) and Group 2 (n = 5).  A 
comparison between Group 1 and Group 2 revealed anecdotal evidence for the null, t = .66, BF = 
1.97, as did the comparison between Group 2 and Group 3, t = .47, BF = 2.31.  The comparison 
between Group 1 and Group 3 yield anecdotal evidence for the alternative, t = 2.4, BF = .5. 

 

Figure 30. Mean fixation duration for the cockpit glass display AOI during Scenario 2. 
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Figure 31 shows mean fixation durations for the cockpit glass display AOI for Scenario 3.  A 
comparison between Group 1 (n = 2) and Group 2 (n = 4) revealed anecdotal evidence for the 
null, t = 1.36, BF = 1.34, as did the comparison between Group 2 and Group 3 (n = 6), t = 1.31, 
BF = 1.4.  The comparison between Group 1 and Group 3 yielded anecdotal evidence for the 
alternative, t = 2.15, BF = .65. 

 

Figure 31. Mean fixation duration for the cockpit glass display AOI during Scenario 3. 

3.6.2.3.  Weather presentation AOI 

Because of the importance of the weather presentation AOI, we analyzed the number and 
durations for fixations and the number and distances for saccades.  Figure 32 shows the mean 
number of fixations on the weather presentation AOI for Scenario 2.  Group comparisons between 
Group 1 (n = 2) and Group 2 (n = 5) provided substantial evidence for the alternative, t = 4.6, BF = 
.12.  The comparison Group 1 and Group 3 (n = 5) provided anecdotal evidence for the null, t = .71, 
BF = 1.78.  In addition, finally, the comparison between Group 2 and Group 3 provided substantial 
evidence for the alternative, t = 3.2, BF = .20. 

 

Figure 32. Mean number of fixations on the weather presentation AOI during Scenario 2. 
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Figure 33 shows the mean number of fixations on the weather presentation AOI for Scenario 3.  
Due to intragroup variability, the estimates of mean differences were uncertain, and all group 
comparisons provided anecdotal evidence for the null: Group 1 and Group 2, t = .70, BF = 1.75; 
Group1 and Group 3, t = .02, BF = 2.14; and Group 2 and Group 3, t = .88, BF = 1.88. 

 

Figure 33. Mean number of fixations on the weather presentation AOI during Scenario 3. 

Figure 34 shows the fixation durations for the weather presentation AOI during Scenario 2.  The 
mean fixation durations were similar across groups and all comparisons provided evidence for the 
null: Group 1 (n = 2) and Group 2 (n = 5), t = .41, BF = 1.99; Group 1 and Group 3 (n = 5), t = .17, 
BF = 2.09; and Group 2 and Group 3, t = .91, BF = 1.88. 

 

Figure 34. Mean fixation durations for the weather presentation AOI during Scenario 2. 
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Figure 35 shows the fixation durations for the weather presentation AOI during Scenario 3.  
Group 3 had longer fixation durations compared to Group 1 and Group 2, but all comparisons 
provided evidence for the null: Group 1 (n = 2) and Group 2 (n = 4), t = .05, BF = 2.07; Group 1 
and Group 3 (n = 6), t = 1.39, BF = 1.2; and Group 2 and Group 3, t = 1.43, BF = 1.25. 

 

Figure 35. Mean fixation durations for the weather presentation AOI during Scenario 3. 

Figure 36 shows the mean number of saccades for the weather presentation AOI during 
Scenario 2.  Group 3 (n = 5) had a larger number of saccades on the weather AOI compared to 
Group 1 (n = 3) and Group 2 (n = 6).  A comparison between Group 1 and Group 2 revealed 
anecdotal evidence for the alternative, t = 2.04, BF = .70.  The comparison between Group 1 and 
Group 3 showed anecdotal evidence for the null, t = 1.32, BF = 1.32.  Finally, the comparison 
between Group 2 and Group 3 revealed substantial evidence for the alternative, t = 3.53, BF = .12. 

 

Figure 36. Mean number of saccades for the weather presentation AOI during Scenario 2. 
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Figure 37 shows the mean number of saccades for the weather presentation AOI during 
Scenario 3.  Due to a large intragroup variability, all group comparisons revealed anecdotal evidence 
for the null: Group 1 (n = 3) and Group 2 (n = 6), t = .05, BF = 2.14; Group 1 and Group 3 (n = 6), 
t = .50, BF = 2.14; and Group 2 and Group 3, t = .36, BF = 2.23. 

 

Figure 37. Mean number of saccades for the weather presentation AOI during Scenario 3. 

Figure 38 shows the mean saccade distances for the weather presentation AOI during Scenario 2.  
All group comparisons revealed anecdotal evidence for the null: Group 1 (n = 3) and Group 2 (n = 
6), t = .80, BF = 1.87; Group 1 and Group 3 (n = 5), t = 1.21, BF = 1.42; and Group 2 and Group 3, 
t = .61, BF = 2.25. 

 

Figure 38. Mean saccade distance for the weather presentation AOI during Scenario 2. 
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Figure 39 shows the mean saccade distances for the weather presentation AOI during Scenario 3.  
Group comparisons between Group 1 (n = 3) and Group 2 (n = 3), t = 1.58, BF = 1.06; and 
between Group 2 and Group 3 (n = 6), t = .59, BF = 2.06, revealed anecdotal evidence for the null.  
The comparison between Group 1 and Group 3, however, revealed anecdotal evidence for the 
alternative, t = 1.96, BF = .76. 

 

Figure 39. Mean saccade distance for the weather presentation AOI during Scenario 3. 

3.6.2.4.  Cockpit console AOI 

Figure 40 shows the mean number of fixations on the cockpit console AOI during Scenario 2.  
For the cockpit console AOI, Group 3 has the largest number of fixations.  Comparisons between 
Group 1 (n = 3) and 2 (n = 6) showed anecdotal evidence for the null, t = .92, BF = 1.72.  When 
comparing Group 1 and Group 3 (n = 5), we found anecdotal evidence for the alternative, t = 1.87, 
BF = .84.  The comparison between Group 2 and Group 3 yielded substantial evidence for the 
alternative, t = 3.28, BF = .16.  

 

Figure 40. Mean number of fixations for the cockpit console AOI during Scenario 2. 
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Figure 41 shows the mean number of fixations on the cockpit console AOI during Scenario 3.  
Similar to Scenario 2, Group 3 had the largest number of fixations.  Comparisons between Group 1 
(n = 2) and Group 2 (n = 4) showed anecdotal evidence for the null, t = .54, BF = 1.87.  When 
comparing Group 1 and Group 3 (n = 5), we found anecdotal evidence for the alternative, t = 2.44, 
BF = .54.  In addition, finally, the comparison between Group 2 and Group 3 yielded anecdotal 
evidence for the null, t = 1.15, BF = 1.54. 

 

Figure 41. Mean number of fixations for the cockpit console AOI during Scenario 3. 

Figure 42 shows the mean fixation durations for the cockpit console AOI during Scenario 2.  
A comparison between Group 1 (n = 3) and Group 2 (n = 6) revealed anecdotal evidence for the 
null, t = .86, BF = 1.8, as did the comparison between Group 2 and Group 3 (n = 5), t = .65, BF = 
2.21.  The comparison between Group 1 and Group 3 showed anecdotal evidence for the 
alternative, t = 1.73, BF = .94. 

 

Figure 42. Mean fixation durations for the cockpit console AOI during Scenario 2. 
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Figure 43 shows the mean fixation durations for the cockpit console AOI during Scenario 3.   
The result was similar to the outcome for Scenario 2.  A comparison between Group 1 (n = 2) and 
Group 2 (n = 4) revealed anecdotal evidence for the null, t = .77, BF = 1.7, as did the comparison 
between Group 2 and Group 3 (n = 5), t = .48, BF = 2.23.  The comparison between Group 1 and 
Group 3 showed anecdotal evidence for the alternative, t = 2.36, BF = .58. 

 

Figure 43. Mean fixation durations for the cockpit console AOI during Scenario 3. 

3.6.3.  Pupil Diameter 

Figure 44 shows the mean pupil diameter for Groups 1-3 during Scenario 2.  All group means 
are very similar and all comparisons provided anecdotal evidence for the null: Group 1 (n = 3) and 
Group 2 (n = 6), t = .43, BF = 2.18; Group 1 and Group 3 (n = 6), t = 1.17, BF = 1.48; and Group 2 
and Group 3, t = .31, BF = 2.58. 

 

Figure 44. Mean pupil diameter for the first 5 minutes of Scenario 2. 
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Figure 45 shows the mean pupil diameter for Groups 1-3 during Scenario 3.  Again, all means 
were very similar and all comparisons provided anecdotal evidence for the null: Group 1 and 
Group 2, t = .48, BF = 2.15; Group 1 and Group 3, t = 1.41, BF = 1.23; and Group 2 and Group 3, 
t = 1.28, BF = 1.48. 

 

Figure 45. Mean pupil diameter for the last 20 minutes of Scenario 3. 

3.6.4.  Eye-Motion Workload 

EMW is the average degrees per second that the eyes move around during the course of a 
scenario.  Figure 46 shows the mean EMW for Groups 1-3 during Scenario 2.  A group comparison 
between Group 1 (n = 3) and Group 2 (n = 6) provided no evidence for the null nor the alternative, 
t = 1.63, BF = 1.0.  A comparison between Group 1 and Group 3 (n = 6) provided anecdotal 
evidence for the null, t = 1.27, BF = 1.37.  A comparison between Group 2 and Group 3, finally, 
provided anecdotal evidence for the alternative, t = 2.44, BF = .43. 

 

Figure 46. Mean eye-movement workload for Groups 1-3 during Scenario 2. 
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Figure 47 shows the mean EMW for Groups 1-3 during Scenario 3.  Similar to the result for 
Scenario 2, Group 3 had a higher mean EMW workload.  However, due to a larger intragroup 
variability, all comparisons yielded anecdotal evidence for the null: Group 1 and Group 2, t = .81, 
BF = 1.77; Group 1 and Group 3, t = 1.47, BF = 1.17; and Group 2 and Group 3, t = .63, BF = 2.14. 

 

Figure 47. Mean eye-movement workload for Groups 1-3 during Scenario 3. 

3.7.  Functional Near-Infrared Analysis 

In this section, we present results from the fNIR recordings.  During Scenario 2 and Scenario 3, 
pilots inadvertently entered IMC 5 minutes into the scenario.  We explored whether there were any 
differences in pilot oxygenation between the first VFR portion (0-1 min) and the initial IFR portion 
(5-6 min) of the flight.  Figure 48 shows the mean oxygenation for Groups 1-3 during Scenario 2.  

 

Figure 48. Number oxygenation for the initial VFR (0-1 min) and IFR (5-6 min) segments of Scenario 2. 
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All groups showed a larger mean oxygenation during the IFR portion of the flight compared to 
the VFR portion of the flight.  For Group 1 (n = 8), the VFR vs. IFR comparison provided strong 
evidence for the alternative, t = 4.65, BF = .04.  For Group 2 (n = 7), the VFR vs. IFR comparison 
provided anecdotal evidence for the alternative, t = 2.71, BF = .39.  Finally, for Group 3 (n = 7), the 
comparison also provided anecdotal evidence for the alternative, t = 2.77, BF = .37. 

A comparison of the oxygenation between Group 1 and Group 2 for the VFR portion (0-1 min) 
of the flight provided anecdotal evidence for the alternative, t = 2.22, BF = .54.  The comparison 
between Group 1 and Group 3 provided anecdotal evidence for the null, t = 1.06, BF = 1.88, as did 
the comparison between Group 2 and Group 3, t = 1.2, BF = 1.65. 

Comparing the oxygenation between groups for the initial IFR portion (5-6 min) of the flight, we 
found that all comparisons provided anecdotal evidence for the null: Group 1 and Group 2, t = .77, 
BF = 2.3; Group 1 and Group 3, t = .05, BF = 2.89; and Group 2 and Group 3, t = .56, BF = 2.5. 

Figure 49 shows the mean oxygenation for Groups 1-3 during Scenario 3.  As we can see by the 
SE bars, the Scenario 3 oxygenation showed much more intragroup variability compared to the 
Scenario 2 result.  For Group 1, the VFR vs. IFR comparison provided substantial evidence for the 
null, t = .31, BF = 3.54.  For Group 2, the VFR vs. IFR comparison provided anecdotal evidence 
for the null, t = 1.16, BF = 1.97.  Finally, for Group 3, the comparison also provided anecdotal 
evidence for the null, t = 1.52, BF = 1.47. 

 

Figure 49. Mean oxygenation for the initial VFR (0-1 min) and IFR (5-6 min) segments of Scenario 3. 

All VFR group comparisons provided anecdotal evidence for the null: Group 1 and Group 2, t = 
.12, BF = 2.73; Group 1 and Group 3, t = .06, BF = 2.82; and Group 2 and Group 3, t = .22, BF = 
2.7.  Similarly, the IFR group comparisons also provide anecdotal evidence for the null: Group 1 and 
Group 2, t = .31, BF = 2.65; Group 1 and Group 3, t = .36, BF = 2.69; and Group 2 and Group 3, t = 
.01, BF = 2.75. 

In addition, we explored whether there were any differences in pilot oxygenation between the 
initial VFR (0-5 min) portion and the initial IFR (5-10 min) portion of the flight.  Figure 50 shows 
the mean oxygenation for Groups 1-3 during Scenario 2.  All groups displayed a larger mean 
oxygenation during the IFR portion of the flight compared to the VFR portion of the flight.  For 
Group 1 (n = 8), the VFR vs. IFR comparison provided anecdotal evidence for the alternative, t = 
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2.46, BF = .51.  For Group 2 (n = 7), the VFR vs. IFR comparison provided substantial evidence for 
the alternative, t = 3.48, BF = .18.  Finally, for Group 3 (n = 7), the comparison provided anecdotal 
evidence for the alternative, t = 2.16, BF = .73. 

 

Figure 50. Mean oxygenation for VFR (0-5 min) and IFR (5-10 min) segments of Scenario 2. 

A comparison of the oxygenation between Group 1 and Group 2 for the VFR portion (0-5 min) 
of the flight provided anecdotal evidence for the alternative, t = 2.26, BF = .51.  The comparison 
between Group 1 and Group 3 provided anecdotal evidence for the null, t = .02, BF = 2.89, as did 
the comparison between Group 2 and Group 3, t = 1.43, BF = 1.34. 

Comparing the oxygenation between groups for the IFR portion (5-10 min) of the flight, we 
found that all comparisons provided anecdotal evidence for the null: Group 1 and Group 2, t = .43, 
BF = 2.69; Group 1 and Group 3, t = .47, BF = 2.65; and Group 2 and Group 3, t = .07, BF = 2.82. 

Figure 51 shows the mean oxygenation for Scenario 3.  The results for Scenario 3 are similar to 
the results for Scenario 2, concerning pilot oxygenation between the initial VFR (0-5 min) portion 
and the initial IFR (5-10 min) portion of the flight.  However, only Group 1 and Group 3 displayed 
a larger mean oxygenation during the IFR portion of the flight compared to the VFR portion of the 
flight.  For Group 1, the VFR vs. IFR comparison provided anecdotal evidence for the alternative, 
t = 1.99, BF = .88.  For Group 2, the VFR vs. IFR comparison provided anecdotal evidence for the 
null, t = 1.21, BF = 1.89.  Finally, for Group 3, the comparison provided anecdotal evidence for the 
alternative, t = 2.72, BF = .39. 
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Figure 51. Mean oxygenation for VFR (0-5 min) and IFR (5-10 min) segments of Scenario 3. 

A comparison of the oxygenation between Group 1 and Group 2 for the VFR portion (0-5 min) 
of Scenario 3 provided anecdotal evidence for the null, t = .55, BF = 2.44.  The comparison between 
Group 1 and Group 3 also provided anecdotal evidence for the null, t = .13, BF = 2.81, as did the 
comparison between Group 2 and Group 3, t = .55, BF = 2.44. 

Comparing the oxygenation between groups for the IFR portion (5-10 min) for Scenario 3, we 
find that all comparisons provided anecdotal evidence for the null: Group 1 and Group 2, t = .34, 
BF = 2.63; Group 1 and Group 3, t = .52, BF = 2.54; and Group 2 and Group 3, t = .18, BF = 2.71. 

As part of the fNIR analysis, we assessed the mean oxygenation for the entire VFR and IFR 
portion of Scenario 2 and Scenario 3.  The VFR portion consisted of the first 5 minutes and the last 
5 minutes of the scenario.  The IFR portion was the 15 minutes following pilots’ inadvertent IMC 
encounter at 5 minutes into the scenario.  

Figure 52 shows the mean oxygenation for the VFR and IFR portions of Scenario 2.  Two of the 
groups displayed a higher mean oxygenation during the IFR portion of the flight compared to the 
VFR portion of the flight.  For Group 1, the VFR vs. IFR comparison provided anecdotal evidence 
for the null, t = .39, BF = 2.77.  For Group 2, the VFR vs. IFR comparison provided anecdotal 
evidence for the alternative, t = 2.38, BF = .40.  Finally, for Group 3, the comparison provided 
substantial evidence for the alternative, t = 3.0, BF = .29. 
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Figure 52. Mean oxygenation for the entire VFR (0-5 min + 20-25 min) and IFR (5-20 min) segments 
of Scenario 2. 

All group comparisons for the VFR portion of the Scenario 2 flights provided anecdotal 
evidence for the null: Group 1 and Group 2, t = .46, BF = 2.66; Group 1 and Group 3, t = .06, BF 
= 2.89; and Group 2 and Group 3, t = .45, BF = 2.61.  Similarly, the group comparisons for the IFR 
portion of the flight also provided anecdotal evidence for the null: Group 1 and Group 2, t = .48, 
BF = 2.64; Group 1 and Group 3, t = .94, BF = 2.05; and Group 2 and Group 3, t = .47, BF = 2.59. 

Figure 53 shows the mean oxygenation for the VFR and IFR portions of Scenario 3.  All groups 
displayed a larger mean oxygenation during the IFR portion of the flight compared to the VFR 
portion of the flight.  For Group 1, the VFR vs. IFR comparison provided substantial evidence for 
the alternative, t = 3.47, BF = .17.  For Group 2, the VFR vs. IFR comparison provided anecdotal 
evidence for the alternative, t = 2.48, BF = .51.  Finally, for Group 3, the comparison provided 
substantial evidence for the alternative, t = 3.86, BF = .11. 

 

Figure 53. Mean (oxygenation for the entire VFR (0-5 min + 20-25 min) and IFR (5-20 min) segments 
of Scenario 3. 
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All group comparisons for the VFR portion of the Scenario 3 flights provided anecdotal 
evidence for the null: Group 1 and Group 2, t = .87, BF = 2.06; Group 1 and Group 3, t = .05, BF 
= 2.82; and Group 2 and Group 3, t = .79, BF = 2.17.  Similarly, the group comparisons for the IFR 
portion of the Scenario 3 flights also provided anecdotal evidence for the null: Group 1 and Group 
2, t = .63, BF = 2.36; Group 1 and Group 3, t = .24, BF = 2.76; and Group 2 and Group 3, t = .35, 
BF = 2.62. 

From the current oxygenation analysis, we have evidence that pilot oxygenation is higher during 
IFR than during VFR portions of flight.  As pilots transitioned from VFR to IFR, the oxygenation 
levels increased.  In addition, we explored whether oxygenation levels decreased during the 
transition from IFR to VFR.  At 20 minutes into the scenario, the IFR portion of the flight 
transitioned into VFR.  Figure 54 shows the mean oxygenation for the last minute of the IFR 
portion (min 19-20) and the first minute of the VFR portion (min 20-21) for Scenario 2.  For Group 
1, the oxygenation difference between the transition from IFR to VFR provided substantial evidence 
for the null, t = .09, BF = 3.9.  For Group 2, the transition from IFR to VFR provided anecdotal 
evidence for the null, t = 1.49, BF = 1.51.  For Group 3, however, the oxygenation difference 
between the transition from IFR to VFR provided anecdotal evidence for the alternative, t = 2.68, 
BF = .41. 

 

Figure 54. Mean oxygenation for the IFR (19-20 min) to VFR (20-21 min) transition during Scenario 2. 

All group comparisons of the IFR portion of flight provided anecdotal evidence for the null: 
Group 1 and Group 2, t = .26, BF = 2.82; Group 1 and Group 3, t = .75, BF = 2.32; and Group 2 
and Group 3, t = .61, BF = 2.45.  Similarly, group comparisons of the oxygenation during the VFR 
portion also provided anecdotal evidence for the null: Group 1 and Group 2, t = .02, BF = 2.89; 
Group 1 and Group 3, t = .12, BF = 2.88; and Group 2 and Group 3, t = .12, BF = 2.81. 

Figure 55 shows the mean oxygenation for the last minute of the IFR portion (min 19-20) and 
the first minute of the VFR portion (min 20-21) for Scenario 3.  Again, as we can see by the SE bars, 
the Scenario 3 oxygenation showed much more intragroup variability compared to the Scenario 2 
result.  For all groups, the oxygenation change during the IFR to VFR transition provided anecdotal 
evidence for the null: Group 1, t = .87, BF = 2.63; Group 2, t = 1.67, BF = 1.22; and Group 3, t = 
1.64, BF = 1.29. 
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Figure 55. Mean oxygenation for the IFR (19-20 min) to VFR (20-21 min) transition during Scenario 3. 

In a similar way, all group comparisons of the oxygenation for both the IFR portion and the 
VFR portion provided anecdotal evidence for the null.  For the IFR portion of flight, Group 1 and 
Group 2, t = .90, BF = 2.02; Group 1 and Group 3, t = .21, BF = 2.78; and Group 2 and Group 3, 
t = .53, BF = 2.46.  For the VFR portion of flight, Group 1 and Group 2, t = 1.13, BF = 1.71; 
Group 1 and Group 3, t = .03, BF = 2.83; and Group 2 and Group 3, t = .89, BF = 2.04. 

3.8.  Weather Questionnaire Results 

After completing the flight runs, we asked each pilot to rate his experience with the weather 
presentation (see Appendix A).  We focused our questions on the overall ease of use and if the 
weather presentation affected pilot decision-making during weather avoidance.  In this section, we 
report descriptive statistics to determine whether important differences exist in perceived usability 
(i.e., ease of information retrieval), workload, and weather situational awareness between the three 
weather presentations. 

3.8.1.  Weather Avoidance 

Across groups, we found that 18 out of 25 pilots reported that it was easy to distinguish 
convective SIGMET areas on their presentation.  These same 18 pilots believed that their weather 
presentation was very helpful in determining the locations of severe precipitation areas and that they 
used it very frequently throughout their flights.  Out of the remaining seven pilots, three pilots in 
Group 1 and one pilot each in Group 2 and Group 3 stated that it was somewhat helpful.  Only one 
pilot, in Group 1, stated that the presentation was not helpful.  That same pilot also commented that 
the Group 1 presentation was not helpful in determining severe precipitation locations.  All other 
pilots reported that their precipitation classification symbols were either helpful or very helpful.  In a 
related issue, we asked pilots how helpful the weather presentation was in determining what areas of 
weather to avoid.  Twenty-three out of 24 of the pilots commented that the information was very 
helpful for weather avoidance, and the remaining pilot still rated it as helpful.  This suggests that, 
regardless of condition, the presentation gave pilots beneficial information for determining and 
avoiding unfavorable weather conditions. 
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3.8.2.  Weather Presentation Usage and Trust 

Although the pilots were told in their briefing to use the weather presentation to avoid weather, 
not all pilots used the presentation all the time throughout the experiment.  In terms of frequency of 
use, we found that all pilots did use the weather presentation during their flight.  One pilot out of 25 
pilots interviewed commented that he used the weather presentation only sometimes to navigate through 
or around adverse weather.  This pilot was using the Group 1 presentation.  All other pilots reported 
that they used their presentation either frequently or very frequently.  

Situational awareness is paramount to the PDM process, so we examined pilot usability and trust 
in the information being presented.  We asked the pilots to compare the benefits of their respective 
presentation information against other sources of weather information they have used.  Twenty-two 
of the 25 pilots rated their presentation as very good compared to other sources they have used. All 
pilots, regardless of group, rated their presentation as either good or very good. None of the pilots 
found the information unhelpful.  Pilots were asked to give a trust rating from 1 to 5 that the 
information they were being given was correct.  Twenty-one pilots gave high trust ratings (4 or 5). 
The remaining three pilots gave ratings of 3.  The pilots trusted the Group 2 presentation the most 
(8 out of 25), then Group 1 (7 out of 25), and, finally, Group 3 (6 out of 25).  In addition to comparing 
the Groups to other presentations, we asked the pilots how much their respective presentations 
decreased their workload while flying.  On a scale ranging from 1 (very little) to 5 (very much), 13 pilots 
rated their presentation as either 4 or 5.  The remaining pilots rated their group as either 2 or 3.  No 
pilots gave a rating of 1 to any of the three weather presentations.  This suggests that, subjectively, 
use of a weather presentation decreased workload for the pilots, regardless of the weather presentation 
group.  Ability to determine the position of the aircraft was also rated by the pilots.  Twenty-three 
out of 24 pilots reported that it was very easy to determine the aircraft position.  The remaining pilot 
felt that there was no difference, neither good nor bad. 

3.9.  Pilot Debriefing Comments 

At the conclusion of each participant’s second flight scenario, we debriefed the pilot.  We asked 
pilots about the overall functionality and usability of their weather presentation display.  The pilots 
provided criticisms and some suggestions for future simulation improvements.  The debriefing 
session was broken up into questions about the weather presentation of the SIGMET area, terrain 
map, precipitation display, lightning symbols, METAR symbols, zoom levels, and range rings.  We 
summarize participant responses to items pertaining to flight realism, cockpit simulator function, 
and weather presentation effectiveness, as these responses can help us improve the simulation 
conditions for future studies.  

3.9.1.  SIGMET Symbols 

Out of the 25 pilots interviewed, one pilot in Group 1, three pilots in Group 2, and two pilots in 
Group 3 all commented that the SIGMET was overwhelming and that it obscured information.  None 
of the pilots felt that the SIGMET was unnecessary, but three pilots commented that it was helpful.  
Pilots remarked that a time stamp as well as cross-hatched lines, instead of solid colors, would be 
helpful improvements to the design. 
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3.9.2.  Terrain Map 

All group weather presentations included a physical terrain map overlay (as illustrated in Figures 
3 and 4).  Over half of the pilots interviewed felt that the terrain was a good and helpful map to have 
under weather presentations.  In particular, six pilots felt that it was a great tool for knowing 
Airports and VORS and for going direct, especially in small planes. 

3.9.3.  Precipitation Display 

Our pilots felt that the precipitation display conveyed useful information.  However, many pilots 
felt that 3 to 5 levels of precipitation was more than adequate and anything more would be 
excessive.  Two pilots thought that the precipitation colors should be “the same as on TV”—
meaning the color palette should match the schema of the Storm Center Doppler radar on the news.  
When asked what color of weather they would normally fly through, only three pilots commented 
that they would avoid anything above dark green on the precipitation scale, and only one pilot 
commented that the display was helpful for gauging storm cell growth. 

3.9.4.  Lightning Symbols 

Pilots had very little problem with the lightning display, except for several pilots in the Group 2 
condition commented that the lightning was obscured by the magenta SIGMET.  The pilots also 
suggested that a time stamp or some way to know the age of the lightning strike would be helpful. 

3.9.5.  METAR Symbols 

We asked the pilots for their opinion on the use of the METAR data on their situational awareness 
while flying.  We found mixed attitudes on whether METAR information is better given in a graphical 
or textual form.  Even with this uncertainty, the pilots suggested that the inclusion of METAR 
symbology was helpful in performing deviations and landings, identifying VFR airports, and spotting 
VORs.  They suggested that adding speed vectors to the data for the weather cells and having some 
sort of indicator for whether the METARs are visibility based, or low-cloud ceiling based, would be 
helpful to future pilots using the system.  

3.9.6.  Weather Presentation Zoom and Range Rings 

Pilots used a zoom feature while flying their scenarios.  The zoom levels given were 5 nmi, 20 nmi, 
and 50 nmi out.  We collected feedback on the use of the zoom feature as well as the use of range 
rings for determining distances while in flight.  All of the pilots interviewed acknowledged that the 
zoom functionality was very good for helping with situational awareness.  The consensus was that 
the pilots used the smaller levels for detail work and used the larger level for an overview of the 
scenario: “I used the 20- and 5-mile zoom a lot for distance keeping and then would zoom out to 
the 50 miles for the big picture.”  The pilots used these zoom levels in conjunction with built-in 
range rings.  We asked the pilots if this was a useful feature for them.  They replied that the rings 
were very helpful for judging distances and helped in determining storm cell scale as well.  However, 
they suggested that having more range rings, or the ability to customize this scale preference, would 
be better. 
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4.  DISCUSSION 

In this study, we assessed GA pilot behavior during weather avoidance operations.  Twenty-five 
IFR-rated pilots were randomly allocated to one of three simulation groups.  The only difference 
between groups was the symbology of the weather presentation.  During two weather scenarios, we 
measured pilot performance and behavior by dependent measures that included ATC communication, 
decision-making, weather avoidance, and cognitive workload.  On the tacit assumption that matched 
pilot groups, on average, will perform similarly when confronted with the same operational tasks, we 
analyzed our simulation outcomes according to two model hypotheses.  The first hypothesis, the null, 
states that there is no difference in performance or behavior between groups.  The second hypothesis, 
the alternative, states that there are differences in performance or behavior between groups. 

The magnitude for most of our simulation effects is anecdotal and, in most cases, the effects 
favor the null over the alternative.  For this simulation, the null is a viable model because some 
dependent measures are likely unaffected by variations in weather symbology.  One example is our 
distance to weather measure where all pilots essentially performed the same and kept a safe distance 
from the 30 dBZ intensities, despite variations in precipitation symbology.  We find that, on average, 
pilots stayed 14 miles away from the smaller cells and 40 miles away from the line storm as measured 
from the aircraft position to the closest area of 30 dBZ intensities.  This illustrates desirable 
decision-making on part of the pilots.  It also shows that the weather presentations for Groups 1-3 
provided the necessary information to stay safely away from hazardous precipitation.  All three 
weather presentations are seemingly equivalent because they provide information about cell intensity 
and location and all outcome comparisons support the null.  Even for studies that systematically 
manipulated precipitation symbology and measured pilot distance to weather, the outcomes were 
similar.  For example, a study by Beringer and Ball (2004) measured the closest approach distance to 
convective cells for GA groups using different NEXRAD resolutions (2 km, 4 km, and 8 km 
resolution and a baseline).  Beringer and Ball computed an F-test, F(3, 28 = 2.109), but did not find 
significant effects of NEXRAD resolution on pilot distance to weather.  In Bayes Factor terms, the 
t-value for this test provides anecdotal evidence for the null.  Therefore, we conclude from these 
results that precipitation symbology alone does not introduce a credible variability in pilots’ weather-
distance decisions. 

We found null support for weather zoom usage and for pilot/ATC communications.  For radio 
communications, the number and durations are similar across pilot groups.  For the zoom usage, all 
groups displayed the same use of the weather presentation zoom, and they displayed each zoom 
level for similar durations.  Most of the pilots used the level 2 zoom with a 20 nmi distance between 
successive range rings.  Much less time was spent using the 5 nmi (Zoom 1) and the 50 nmi (Zoom 
3) presentations.  Evidently, the 20 nmi presentation provided a balance between sufficient weather 
detail for avoidance and provided enough look-ahead distance for near-time planning.  The feedback 
from pilots was positive, and pilots stated that the zoom functionality was very good for maintaining 
weather situational awareness.  The consensus from pilots was that the smaller zoom levels were good 
for details and the largest zoom level provided an overview of the entire weather scenario.  Pilots 
also suggested a user-defined zoom to make the presentation even more useful. 

Additional results that support the null are pilot heading and altitude changes.  Overall, the three 
groups kept the same average scenario heading and altitude.  One exception is for Group 1 and 
Group 3 in Scenario 3.  For altitude, this general result is somewhat expected because pilots did not 
have access to any echo top or echo bottom information and both scenarios started at an altitude.  
The average heading changes are correlated with the overall deviation behavior, which we will discuss 
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in more detail below.  For other weather scenarios and aircraft types, the heading, and altitude 
changes would likely play a more important role for assessing pilot weather-avoidance behavior. 

Throughout our results, we found effects that reflect different behaviors between groups.  
Although most of these effects are anecdotal in support of the alternative, they are nevertheless 
operationally important due to the potential impact on GA pilots.  These effects include weather 
deviations, fixations, EMW, and cognitive workload.  In contrast to the anecdotal effects, for most 
of these outcomes we find credible effects (lower intragroup variability) that range from substantial 
to strong.  From our pilot deviation measure, we found that pilot groups chose different deviation 
routes from start to destination.  Evidently, based on the Group 1 and Group 3 weather presentations, 
Group 1 and Group 3 pilots chose a very different route from start to destination compared to routes 
that Group 2 pilots chose. 

We found credible effects for a differential scanning pattern among the pilot groups.  During 
flight, pilots sampled visual information from the out-the-window view, the cockpit glass display, the 
weather presentation, and the cockpit console.  The movement of the eyes from one location to the 
next is called a saccade, and the prolonged foveal attention on an object or on detail is called a 
fixation.  In combination, the array of saccades and fixations create a visual scanning pattern.  The 
visual scan is an active process of exploring regions for goal-relevant information.  If we perform a 
scan pattern analysis, it can reveal how pilots allocate their visual attention during flight.  In this 
study, we used POG data to define saccades and fixations and to assess how pilots scanned the 
AOIs during flight.  Overall, Group 3 had more fixations and saccades than Group 1 and Group 2.  
Specifically, we found Group 3 had credible effects with a different scan pattern, including an 
increased number of fixations and saccades on the cockpit glass display AOI and the weather 
presentation AOI.  Judging from the weather presentations of Groups 1-3 (as shown in Figure 3), it 
is clear that the various combinations of colors and symbols create very different images.  Although 
the weather data are the same, the perceptual impact from the combinations of elements, symbols, 
and colors is clearly different.  We know from previous research on integrated cockpit displays 
(Arend, 2003) that simultaneous presentations of terrain maps and weather information can pose 
salience issues, especially in the area of color-coding.  In addition, we know that different color 
combinations can affect the perceived urgency of weather data (Ahlstrom & Arend, 2005).  These 
factors also influence user scan patterns and visual workload.  Most important, variations in colors 
and weather symbology seem to affect pilot behavior and decision-making. 

In addition to visual workload, we used fNIR, an optical imaging technology that measures 
neural activity and hemodynamic response in the prefrontal cortex, to assess the cognitive load as 
pilots navigated scenarios under both VFR and IFR conditions.  For this study, we focused on 
analyzing the oxygenated hemoglobin.  Typically, the fNIR signal from neural activation is a decrease 
of deoxygenated hemoglobin accompanied by an increase of oxygenated hemoglobin.  Our findings 
show that oxygenation levels were very similar across groups, predominantly, showing anecdotal 
support for the null.  One exception is a group difference in oxygenation levels during the VFR 
portion of flight, which provides anecdotal evidence for the alternative.  This means that pilots were 
under similar cognitive loads during flight, regardless of the weather presentation (Groups 1-3) used.  
In contrast, we find results favoring the alternative with consistently higher oxygenation levels for 
the IFR portions of flight compared to the VFR portions of flight.  During VFR, the pilot navigates 
by visual sampling from the out-the-window view.  During IFR, when visibility is zero, the pilot 
navigates by means of cockpit instruments under ATC control.  Clearly, these two flight rule modes 
impose very different planning and decision states on part of the pilot.  However, future research 
needs to unveil what information seeking, planning, and decision-making cause the increased 
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cognitive load as evidenced by the increased oxygenation.  These are important factors that need to 
be addressed in future assessments of weather symbology presentations. 

5.  CONCLUSION 

In the present study, we found credible effects on pilot behavior, workload, and decision-making 
from the use of weather presentations.  The only manipulation during the simulation was the 
weather presentation symbology; the weather data were the same.  This raises the question if other 
scenario and weather factors, not investigated in this study, also affect pilot behavior during GA 
weather avoidance.  For example, we deliberately constrained our weather presentation to four 
different weather data elements.  This meant that pilots could learn the weather presentation quickly, 
and it negated the need for exhaustive pilot training and practice.  In addition, we took great care to 
limit clutter in the display, yet we provided sufficient symbology for weather avoidance flights to 
allow for a symbology comparison.  Commercial MET products allow the user to select and display 
a great number of weather data elements.  From a pilot’s perspective, this is advantageous; however, 
it can also cause serious legibility and salience issues.  Besides the three zoom levels, we also omitted 
all pilot interactions with the weather presentation.  This was not done because weather presentation 
interfaces are not important; it was done because interface design is a confounding factor that tells 
us nothing about the effects of weather symbology.  Another important factor is pilot weather 
informational needs and usage during different phases of flight (FAA, 2010).  In the present 
simulation, pilots flew a Cessna 172 simulator.  With no take-offs or landings, GA appropriate 
weather scenarios, and an average speed of 130 knots, the scenarios posed particular time stress, 
decision-making, and flight constraints on pilots.  With a faster aircraft, a different flight scenario, 
and more weather encounters, there would be a different time-constraint for pilot decision-making.  
Therefore, it is very likely that behavioral and workload effects will differ and that some effects will 
be more pronounced. 

6.  RECOMMENDATIONS 

This simulation was specifically tailored to answer the primary question “Are there effects on 
pilot decision-making and behavior from weather presentation symbology?”  Because this study 
revealed effects on pilot behavior, we need to answer the next question “Are these effects of 
weather symbology operationally important?”  This entails follow-up studies that specifically focus 
on key parameters to assess their operational impact on pilot behavior; therefore, we make the 
following recommendations for the WTIC Program Office. 

1. Conduct follow-up studies to assess the operational importance of variations in pilot 
decision-making and behavior from the use of weather presentations.  The present study 
shows that pilot weather-avoidance behavior differs as a function of weather presentation 
symbology.  The follow-up study needs to asses if these differences in flying behavior are 
operationally important.  That is, are certain weather symbology presentations causing pilots 
to make suboptimal decisions? 

2. Conduct follow-up studies to assess how weather presentation symbology affects pilots with 
different levels of experience.  The participants in this study were experienced GA pilots.  
Are the effects of weather presentation symbology the same for pilots with much less 
experience? 

3. Conduct follow-up studies to assess pilot workload under operationally relevant flight 
scenarios.  The present study found differences in workload (i.e., fNIR) between pilot 
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groups.  However, the flight scenarios were specifically tailored to assess the presence of 
workload effects.  Furthermore, the weather presentation consisted of four weather elements 
that were displayed at all times.  There is a need to assess how other flight conditions, 
weather presentation designs, and time constraints affect pilot workload.  For example, how 
is pilot workload affected by weather symbology when pilots are flying without the use of 
auto pilot?  How is pilot workload affected when the user needs to select or deselect weather 
presentation elements from an interface? 

4. Conduct follow-up studies to assess the operational impact of latencies and time stamps for 
weather presentations.  In the present study, pilots did not have a time stamp on the weather 
presentation but were told that the precipitation information could be up to 10-17 minutes 
old.  Depending on how the time stamps for weather information are generated, they could 
potentially be erroneous or misleading.  What is the operational impact on pilot behavior 
from the presence of time stamps?  Are pilots aware of and do they adjust their decision-
making based on the age of weather presentation time stamps? 

5. Conduct follow-up studies to evaluate the impact on pilot visual scanning from weather 
symbology presentations.  This study shows that visual scan patterns among pilots differ as 
a function of weather presentation symbology.  Are these differences due to suboptimal 
color/symbology variations that reduce the efficiency by which pilots retrieve information?  
Are these effects magnified with an increasing number of weather elements in the 
presentation?  If so, what combination of symbols and colors reduces the scan pattern 
variability among pilots? 
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Acronyms 

AGL  Above Ground Level 

AOI  Area of Interest 

ATC  Air Traffic Control 

ATIS  Automatic Terminal Information Service 

BF  Bayes Factor 

CAT  Clear Air Turbulence 

DUAT  Direct User Access Terminal 

EMW  Eye Movement Workload 

FAA  Federal Aviation Administration 

FAR  Federal Aviation Regulation 

fNIR  Functional Near Infrared 

FSS  Flight Service Station 

GA  General Aviation 

HUO  Huguenot VOR 

IFR  Instrument Flight Rules 

IMC  Instrument Meteorological Conditions 

IRB  Institutional Review Board 

JZS  Jeffrey-Zellner-Siow 

KBDL  Bradley International Airport 

LHY  Lake Henry VOR 

LIFR  Low Instrument Flight Rules 

MET  Meteorological 

METAR  Meteorological Report 

MIP  Milton VOR 

MVFR  Marginal Visual Flight Rules 

NAS  National Airspace System 

NDI  Northern Digital Inc. 

NEXRAD  Next Generation Radar 

NextGen  Next Generation Air Transportation System 

NHST  Null Hypothesis Significance Testing 

NOAA  National Oceanic and Atmospheric Administration 

PDM  Pilot Decision Making 

POG  Point of Gaze 

PTT  Push-To-Talk 

RTCA  Radio Technical Commission for Aeronautics 

SIGMET  Significant Meteorological Advisory 

SME  Subject Matter Expert 
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VFR  Visual Flight Rules 

VHF  Very High Frequency 

VMC  Visual Meteorological Conditions 

VOR  Omnidirectional Radio Range 

WJHTC  William J. Hughes Technical Center 

WTIC  Weather Technology in the Cockpit  
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Appendix: Weather Presentation Questionnaire 

 



 

A-1 

Weather Presentation Questionnaire 

1. Using the weather presentation, how easy was it to see the convective SIGMET areas?  

                              Very Hard                                                                   Very Easy                         

      1   2      3      4       5  

2. Using the weather presentation, how easy was it to determine the location of severe precipitation areas? 

                              Very Hard                                                                   Very Easy                         

      1   2      3      4       5  

3. How much did the weather presentation assist you in determining what areas of weather to avoid?  

                          Not at all                                                        Very Much                      

      1   2      3      4       5  

4. How would you rate the benefits of the weather presentation information to other sources of weather 
information (ATIS, Flight Watch, etc.)? 

                               Very Poor                                                                  Very Good                       

      1   2      3      4       5  

5. During the simulation, how frequently did you use the weather presentation to help you navigate 
through or around adverse weather conditions? 

                             Very Rarely                                                                  Very Frequently                

      1   2      3      4       5  

6. How much do you think the weather presentation decreased your workload? 

                          Not at all                                                        Very Much                      

      1   2      3      4       5  

7. How much did you trust the weather presentation to give you correct information? 

                          Not at all                                                        Very Much                      

      1   2      3      4       5  

8. How easy was it to determine the position of the aircraft based on the presentation? 

                              Very Hard                                                                   Very Easy                         

      1   2      3      4       5  

Thank you very much for participating in our study, we appreciate your help. 


