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Executive Summary 

The overarching goal of the study, conducted under the Weather Technology in the Cockpit 
(WITC) program, is to develop Minimum Weather Service rendering recommendations to 
resolve/reduce the previously identified gap of change blindness with the intent of 
reducing/resolving the shortfall of associated safety risks.  During this study, researchers used 
the FAA William J. Hughes Tech Center (WJHTC) Cockpit Simulator Facility to perform two 
change-detection experiments.  The change-detection experiments focused on pilot sensitivity to 
weather symbol changes in cockpit weather presentations. 

Pilots may use cockpit weather displays to receive weather information updates during their 
flights.  It is important that pilots perceive changes in the weather display because the weather 
changes can have safety implications for the flight.  The ability for the pilot to detect changes in 
the display is called change detection, whereas the inability to detect any change is called change 
blindness.  Previous research has found change blindness effects for symbol and color variations 
and revealed that these effects are more pronounced for older participants (age 60 and older) than 
younger participants (age 59 and younger).  These results are important and point to several gaps 
in current weather display research.  First, weather display developers should aim to develop 
display symbols that allow rapid encoding and detection.  This is especially important 
considering the large number of weather symbols and different backgrounds used on modern 
weather displays.  Second, as part of the symbol-evaluation process, care must be taken to ensure 
that the weather symbology is equally effective for all age groups.  This is especially important 
because approximately 30% of all U.S. private pilots are 60 years of age or older (FAA, 2016). 

In the present study, we addressed this symbol-detection gap by evaluating the effect of symbol 
enhancement on pilot visual performance.  Specifically, we used symbol salience enrichments to 
increase pilot change-detection performance.  The specific goals of the study were: to evaluate 
how enhancements to weather symbol salience affect pilot change-detection performance 
(Experiment 1); to evaluate how line segment salience affects pilot change-detection 
performance (Experiment 2); and to assess the presence of age-related effects on change-
detection performance and response time. 

Ninety-seven private general aviation pilots participated in this study.  The participants 
experienced two part-task experiments in which they had to determine whether images presented 
to them were the same or different.  Both experiments utilized a one-shot technique, which 
briefly presented two images in succession that were either the same or with enhanced symbol 
salience.  

The result of our symbol enhancements was a main effect of symbol salience on change-
detection performance.  For the line, lightning, and METAR symbol trials, pilot detection 
performance was credibly higher for high-salience lines and credibly higher for the salience-
enriched symbols (Enhanced) compared to the original symbols (Control).  For time-stamp 
information, however, there was no credible difference in discriminability between the Enhanced 
and Control conditions.  We conclude that the lack of an effect of salience for time-stamp 
information is due to the time-stamp location.  The result for both the Control and the Enhanced 
time-stamp conditions show near-chance discriminability, similar to the result reported by 
Ahlstrom and Suss (2014).  Currently, many commercial weather products display time-stamp 
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information for displayed weather data (FAA, 2010), and this information is frequently presented 
in the menu bar or in one of the upper corners of the display (Latorella & Chamberlain, 2002).  
Because this time-stamp location precludes efficient detection and encoding, display developers 
need to design time-stamp information that overcomes this deficiency.  

There is now sufficient evidence of credible differences in pilot change-detection performance 
depending on the symbol shape and color.  There is also evidence that the detection time and 
encoding time of weather symbols vary as a function of pilot age. These are important findings 
that should guide future weather display developments.  First, all weather display symbols 
should allow rapid encoding and detection for pilots of all ages.  This is especially important 
because of the large number of different weather elements that are overlaid on modern 
multifunctional displays (FAA, 2010) and the relatively large (~30%) population of private pilots 
that are 60 years of age or older (FAA, 2016).  If not taken into consideration, weather symbol 
changes or weather symbol updates can lead to salience problems where important information 
fails to visually segregate from less-critical background information 

We believe that the current study provides a general framework for how to enhance weather 
display symbols for efficient use in a multitasking cockpit environment.  If display developers 
would use this framework, it would support GA pilots and possibly increase the efficiency and 
safety of operations by providing information that can be used to avoid adverse weather 
conditions during flight.
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1 INTRODUCTION 

Flights in clear weather conditions, where the visibility is clear enough for pilots to see where the 
aircraft is going, are called Visual Flight Rules (VFR) flights.  During VFR flights, General 
Aviation (GA) pilots perform many tasks that are vital to aviating, navigating, and 
communicating.  These tasks range from navigating a route, performing “see and avoid,” 
operating the radio and navigational instruments, viewing charts and approach plates, and 
scanning and interpreting the flight instruments.  Single-pilot operations are highly dynamic 
environments that require multitasking on part of the pilot. 

When GA pilots experience weather situations, the level of multitasking is likely to increase.  
This can happen, for example, when weather conditions at the destination airport or along the 
route of flight impact or prevent VFR operations, but instead require instrument fly rules (IFR) 
operations. In these situations, pilots need to stay informed about weather changes that could 
affect the safety of flight as well as the tasks and scan patterns necessary for aviating, navigating, 
and communicating. Many GA pilots choose to maintain their weather situation awareness 
through use of cockpit weather displays, receiving in-flight weather updates for relevant areas 
along the route.  

When using cockpit-mounted or handheld weather displays, pilots need to extend their visual 
scan pattern to include the weather display.  Previous research has shown that pilot scan patterns 
are highly variable, but that most pilots sample visual information from the out-the-window 
view, the cockpit glass display, the weather presentation, and the cockpit instrument console 
(Ahlstrom & Dworksy, 2012).  Pilots generally include at least four separate locations during 
their visual scan.  While the pilot is scanning one of the other areas, the information on the 
weather display may change. On modern electronic weather displays, weather updates are done 
in various ways, using text, line, symbol, or color changes.  The ability of humans to detect such 
changes is called “change detection” (Rensink, 2002).  The opposite of change detection is 
“change blindness,” a phenomenon in which humans are unable to detect changes in their field of 
view. Simons and Ambinder (2005) suggest that the underlying cause of change blindness is a 
limitation in the ability to encode, retain, and compare information from one glance to the next.  
This is particularly relevant for pilots because of their divided attention and visual scan pattern.  
Pilots’ information extraction is often restricted to a summary encoding of information from one 
glance to the next.  This means that pilots might be susceptible to change blindness, caused by a 
failure to encode and to compare the weather display status from only a few visual samples.  

Previous research has documented change blindness effects for symbols similar to the ones used 
for modern digital weather displays.  For example, Durlach (2004) found that operators of Army 
digital systems showed change blindness to icon position changes and color changes.  Research 
has also found that change blindness is much more pronounced for background image changes 
than for symbol foreground changes, even when the background changes are greater than the 
symbol changes (Turatto, Angrilli, Mazza, Umiltà & Driver, 2002).  Similarly, a recent study by 
Ahlstrom and Suss (2014) used flight simulations and change-detection tasks to evaluate the 
effect of shape and color variations in MEteorological Terminal Aviation Routine weather 
reports (METARs) symbols on pilots’ change-detection performance.  The result showed 
credible differences in pilot change-detection accuracy depending on the symbol shape and 
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color.  In addition to these results, there are even more peculiar effects on change-detection 
performance from variations in symbol color and shape.  Using color and luminance changes for 
rectangular symbols, Ball and Busch (2015) found that participants could detect changes that fell 
outside their focus of attention, but were unable to tell what had changed or where it had 
happened.  

In addition to symbol variables, there are also individual variables that affect the detection of 
change (Sekuler & Sekuler, 2000).  Previous research found an effect of participants’ age on 
detection accuracy and encoding time.  For example, Costello, Madden, Mitroff and Whiting 
(2010) found change-detection accuracy to be worse for older participants (age 60 and older) 
than younger participants.  Ratcliff, Thapar, and McKoon (2001) examined the effects of 
participant age on response time in a simple detection task and found that older participants (age 
60 and older) had a longer response time than younger participants (age 59 and younger).  There 
is also research on encoding and comparing information from only a few visual samples that has 
relevance to pilot scan patterns.  Using a measure of stimulus recall fidelity, Peich, Husain and 
Bays (2013) examined the exactness by which participants could reproduce (from memory) the 
orientation and color of a single rectangle from an array of colored rectangles.  Their result 
indicated an age-related decrease in the resolution by which visual information can be 
maintained in working memory.  The older participants (age 66 and older) exhibited wider error 
distributions, indicating less accurate memory.  

Taken together, previous research has found change blindness effects from symbol and color 
variations and revealed that these effects are more pronounced for older participants (age 60 and 
older) than younger participants (age 59 and younger).  These results are important and point to 
several gaps in current weather display research.  First, weather display developers should aim to 
develop display symbols that allow rapid encoding and detection.  This is especially important 
considering the large number of weather symbols and different backgrounds used on modern 
weather displays.  Second, as part of the symbol-evaluation process, care must be taken to ensure 
that the weather symbology is equally effective for all age groups.  This is especially important 
because approximately 30% of all U.S. private pilots are 60 years of age or older (FAA, 2016). 

Therefore, the purpose of the present study is to assess detection performance of weather 
symbols and provide recommendations to reduce change blindness. 

2 PURPOSE 
The present study aimed to evaluate the effect of symbol enhancement on pilot visual 
performance to reduce or resolve the change blindness gap found by previous research.  The 
specific goals of the study were: 

1. to evaluate how enhancements to weather symbol salience affect pilot change-detection 
performance (Experiment 1); 

2. to evaluate how line segment salience affects pilot change-detection performance 
(Experiment 2); and 

3. to assess the presence of age-related effects on change-detection performance and 
response time. 
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3 EXPERIMENT 1 
The purpose of Experiment 1 was to empirically evaluate the effect of enhancements to weather 
symbology salience on change-detection performance.  Based on previous research, we predict 
that change-detection performance will increase as symbol salience increases. 

3.1 Participants 
A total of 97 private GA pilots volunteered to participate in Experiment 1.  We present their 
background information in Table 1. 
 

Table 1. Descriptive Characteristics of Study Participants 

   
Flight hours accrued 

 
Age (years) Total Instrument Instrument- last 6 mo. 

N Median Range Median Range Median Range Median Range 

97 48 18 - 82 325 65 - 725 12 0 - 1000 1 0 - 90 

We divided the N=97 participants into two groups: younger pilots (n=67; age 59 and younger) 
and older pilots (n=30; age 60 and older) similar to previous research (Costello, Madden, Mitroff 
and Whiting, 2010; Ratcliff, Thapar and McKoon, 2001). 

Because a wide range of visual stimulation (including flicker sequences) can lead to seizures in 
epileptics, we planned to exclude participants from participation in Experiment 1 if they had a 
personal and/or familial history of epilepsy.  No pilots declined to participate because of a 
history of epilepsy. 

3.2 Informed Consent Statement 

Each participant read and signed an informed consent statement before beginning the 
experiment.  Informed consent statements describe the study, the foreseeable risks, and the rights 
and responsibilities of the participants, including that their participation in the study is voluntary.  
All the information that the participant provided, including Personally Identifiable Information 
(PII) is protected from release except as may be required by statute.  Signing the form indicated 
that participants understood their rights as participants in the study and their consented to 
participation. 

3.3 Research Personnel 

The research team consisted of personnel from the FAA Human Factors Branch.  We developed 
stimuli, performed initial testing, briefings, data collection, and analysis of the data.  

3.4 Facilities 

We conducted the study at the William J. Hughes Technical Center Cockpit Simulation Facility 
(CSF).  The CSF has a dedicated computer section for change-detection experiments. 
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3.5 Stimulus Experiment System 

We used the Stimulus Experiment System (SES) software installed on Intel Corei5 HP® desktop 
computers equipped with a Dell® P2212H Liquid Crystal Display monitor (as shown in Figure 1) 
to display the change-detection stimuli to participants.  This system enables researchers to 
administer the experimental tasks to the participant by: 1) selecting the experimental protocol 
(i.e., one-shot technique); 2) assigning a coded identifier to the participant; and 3) present a set 
number of experimental trials to the participant.  Participant response data were recorded 
automatically and written to a data file.  

 

Figure 1. Experiment desktop computer 

3.6 Data Handling Procedure 

We assigned a coded identifier to each participant pilot and tagged all other data-collection 
forms, computer files, electronic recordings, and storage media containing participant 
information only with the coded identifier, not the name or personal identifying information of 
the participants.  

3.7 Change-Detection Technique 

Change detection has been defined as “the apprehension of change in the world around us” 
(Rensink, 2002, p. 246). In GA operations using weather presentations, it is imperative that pilots 
can perceive symbol locations correctly and also detect important symbol changes.  This is 
especially important because pilots often need to capture display information “at a glance.”  

The goal of Experiment 1 was to examine GA pilots’ abilities to detect changes in weather 
presentations in a part-task environment (i.e., change detection as an isolated task).  One 
experimental technique used to assess of change-detection performance is the one-shot technique 
(Rensink, 2002).  Using this technique, researchers present participants with a pair of images 
(i.e., Image 1 and Image 2) sequentially. Image 1 is displayed for a short duration, then a blank 
screen masks the display briefly, and then Image 2 is displayed.  The participant presses a button 
to indicate whether Image 2 was different than Image 1.  
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During Experiment 1, we used two types of trials:  

• Signal trials are those trials in which a change occurs between Image 1 and Image 2 (i.e., 
there is a change to detect).  

• Noise trials are trials in which Image 1 is identical to Image 2 (i.e., there is no change to 
detect).  In the present experiment, half of the images are noise trials.  By including noise 
trials, participants must make a decision between two options (i.e., change detected/no 
change detected).  

For Experiment 1, we used the one-shot technique, as shown in Figure 2.  During the experiment, 
participants initiated each trial by pressing the spacebar on the computer keyboard.  First, a grey 
screen with a central fixation cross appeared for 1000 ms, and then Image 1 was displayed for 
400 ms. Image 1 was then replaced by a blank, grey screen for 1000 ms, after which Image 2 was 
displayed for 400 ms (Droll, Gigone, & Hayhoe, 2007; Turatto, Angrilli, Mazza, Umiltà, & 
Driver, 2002).  Participants provided a response by pressing one of two buttons on the keyboard 
to indicate either “Yes” (change detected) or “No” (no change detected).  The software waited 
for a response for 60 seconds; if the participant did not enter a response within that period, the 
trial ended automatically and recorded a “no response.”  

Figure 2. Example trial using the one-shot change-detection paradigm 

3.8 Analysis and Manipulation of Salience Information 

Modern cockpit weather displays can be very complex because the large number of weather 
elements that are presented on top of a detailed background map.  It is therefore imperative that 
individual weather elements are clearly discernable (i.e., salient), allowing pilots to detect both 
small and large changes. 

400 ms 
1000ms 

400ms 

1000ms 

Press the 
spacebar to start 

Image 1 

Image 2 
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A salient object (element) stands out against neighboring elements in a natural scene or an 
image.  Salient features capture our attention and thereby enhance detection.  Researchers have 
developed models that predict visual attention and fixation patterns from salience, as defined by 
measurable stimulus characteristics.  According to these models, the visual detection process is 
driven by fast, pre-attentive processing, as well as slow, top-down processing.  A well-known 
computational model is an algorithm by Itti, Koch, and Niebur (1998) that first integrates image 
features into a topological salience map.  The model then selects image regions in order of 
decreasing saliency.  In a final processing stage, the salient (i.e., conspicuous) regions are 
selected for a detailed analysis.  In this way, a complex scene is rapidly broken down into areas 
of interest. 

Similar to the analysis of a natural scene, saliency-based approaches can be used to analyze 
weather display images.  In general, salience algorithms determine the contrast of image regions 
relative to their nearest-neighbor regions, using features of color, luminance, and intensity.  
Therefore, a salience analysis can break down a complex weather image into salient features or 
conspicuous regions.  However, one drawback with most saliency algorithms is that the resulting 
salience map is of very low resolution and would, therefore, not be suitable to analyze detailed 
and complex weather maps.  One exception is a frequency-tuned salience algorithm proposed by 
Achanta, Hemami, Estrada, and Süsstrunk (2009).  In their adaptation, the output of the saliency-
detection analysis (i.e., the salience map) has more frequency content from the original image 
and can therefore produce a salience map in full resolution.  In addition to their published 
research, Achanta et al. (n.d.) also provide free online software that implements their salience. 

Here, we present our general procedure for performing a salience-based analysis of weather 
display images.  For all salience analyses, we used the Achanta et al. software to generate 
salience maps, and the GNU Image Manipulation Program (GIMP) (www.gimp.org) for creating 
change-detection images and for measuring symbol intensities on salience maps. Becker, Sundar, 
Bello, Alzahabi, Weatherspoon, and Bix (2016) used a similar approach for an analysis of the 
salience of front-of-pack nutrition labels. 

In the Achanta et al. (2009) framework, the salience map (S) for a weather image (I) of a given 
width (W) and height (H) is given by: 

    S(x, y) = |Iµ - Iwhc (x, y)|     (1) 

where Iµ is the mean image pixel value and Iwhc is the Gaussian blurred version of the original 
image.  In the Achanta et al. application, Equation 1 is extended to use features of color and 
luminance using the Lab color space: 

    S(x, y) = ||Iµ - Iwhc (x, y)||     (2) 

where Iµ is the average image feature vector, Iwhc (x, y) is the Gaussian blurred version’s image 
pixel vector value, and || || is the L2 norm.  Using the Lab color space, each pixel location is 
therefore an [L, a, b]T vector with the L2 norm being the Euclidean distance. 

http://www.gimp.org/
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Figure 3(a) shows a weather display image that is similar to some of the images used in the 
Ahlstrom and Suss (2014) study. The image has weather elements like precipitation, lightning 
strikes (purple dots), Significant Meteorological Advisory (SIGMET) area (solid purple lines), 
and METAR information (yellow IFR and blue VFR circles).  When we analyze the image using 
the Achanta et al. software, we acquire the salience map that is shown in Figure 3(b). In the 
salience map, the brightest regions have the highest salience, and the “darkest” regions have the 
lowest salience.  As we can see in the salience map, the SIGMET area and the lightning strikes 
have the highest salience.  Other image features like the time-stamp text (top of image) and the 
METAR symbols have low salience, with the precipitation areas falling somewhere in-between 
the salience of the SIGMET and the METARs.  The topological background map has the lowest 
salience of all the image features.  

              (a)                                                                                 (b)  

Figure 3. (a) an original weather display similar to the images used by Ahlstrom and Suss 
(2014); (b) the salience map produced by analyzing the image to the left with the Achanta, 

Hemami, Estrada, and Süsstrunk (2009) software 

 

With regard to our use of the word “color” during our preparation of the change-detection 
images for Experiment 1 and Experiment 2, we manipulated the colors used to define line 
segments, lightning symbols, METARs, and the text in the time-stamp information.  These color 
adjustments were done to increase the salience of features in the enhanced images.  This does not 
mean that we are proposing that weather display developers should implement the colors we 
used for the enhanced images.  We are simply using our symbology palettes as an example.  
Weather display images are unique as developers use different symbols, color palettes, and 
background maps for their weather products.  Therefore, there is no single color adjustment that 
would work for all weather images as the salience of a particular feature is determined by many 
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factors including color, luminance, spatial frequency, and feature orientation of surrounding 
elements.  Our color adjustments show how we can manipulate the salience of weather image 
features—with the hypothesis that the relative salience drives the detection of image symbol 
change.  Whereas the particular color adjustments are unique for different weather images, our 
framework for manipulating image salience is general.  The same procedure can be used for 
other similar weather images that were created with different color palettes and different weather 
symbology.  

As an example of the process, we present a scenario that exemplifies a detection problem and 
how our methodology can be used to enhance individual weather symbols.  We run a change-
detection experiment and find that pilots have difficulty seeing color changes for METAR 
symbols (e.g., VFR to IFR—a blue circle changes to a yellow circle).  We analyze the weather 
images using the Achanta et al.(2009) software to acquire salience maps.  We then analyze the 
salience maps for METAR intensities and find that the intensities for the blue and yellow circles 
are very close, which means that the salience is also very similar.  If the salience for different 
METAR colors is very similar, it means that a change from one color to another will be difficult 
for pilots to detect.  Therefore, we want to increase the salience difference between the METAR 
colors to make the changes more visible to pilots. 

To increase the salience of the VFR METAR symbols (see Figure 4, light blue circles) we 
performed the following steps:  

    (a)                                                           (b) 

Figure 4. (a) original image—blue METARs have RGB(0, 254, 254);  
(b) adjusted image—the center of the blue METARs have RGB(4, 27, 245)  
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First, we used GIMP to make a change to the blue VFR METAR colors in the image—either by 
adjusting the original color value or by using a different color.  In Figure 4, the original image is 
shown on the left, and the adjusted image is shown on the right 
 
Next, we performed a salience analysis of the original image and the adjusted image using the 
Achanta et al. software.  The output of this analysis is a salience map for each image, as shown 
in Figure 5.  Note the difference between the VFR METARs in the (a) original image and (b) the 
adjusted image. 
 

 
                                       (a)                                                (b)  

Figure 5. (a) salience map from the original image; (b) salience map from the 
enhanced (color manipulated) image 

 

 
In the next step, we loaded each of the two salience maps into GIMP.  In GIMP, we can either 
use the Free Select Tool or the Fuzzy Select Tool (see Figure 6) to select the METAR symbol. 

 

Figure 6. The Free Select Tool and the Fuzzy Select Tool in GIMP 
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Once a symbol is selected, we can read off the channel-intensity parameters in the Histogram 
Dialog (see Figure 7; here we only use the mean value).  The intensity levels range from 0–255 
with a black pixel being 0 and a white pixel being 255.  In Figure 7(a), we can see that the mean 
intensity for a VFR METAR symbol in the original image is 43.9, whereas it is 251.6 for the 
color-adjusted VFR METAR (see Figure 7(b)).  The mean intensity value for an IFR METAR 
symbol (yellow circle) in the originl image = 91.7.  Therefore, the intensity difference for a color 
change (yellow to blue) in the original image is 91.7 - 42.3 = 49.4 intensity units.  For the 
adjusted image, the intensity difference is 251.6 - 67 = 184, which implies a 3.7 times higher 
intensity change for a yellow/blue color change compared with the original image. 
 

 
             (a)                                                                         (b)  

Figure 7. (a) the mean intensity value for a METAR in the original image = 
43.9; (b) the mean intensity value for a METAR in the adjusted image = 251.6 

 

 
In the final step, we verified that the adjusted METAR symbols improve the detection of the 
blue/yellow color change.  Depending on the task at hand, this could amount to an informal 
visual evaluation by one or more observers, or the design and execution of a formal change-
detection experiment. 

The procedure outlined in steps above can be used for an adjustment of any weather image 
feature such as lines, symbols, solid infills, semi-transparent infills, and text. 

3.9 Experimental Stimuli 
Modern weather displays present a multitude of information to pilots.  Figure 8 shows three 
different presentations that reveal the same weather information, but in different symbols and 
colors.  In addition to weather symbols, most weather applications also allow the user to select 
different backgrounds like topological maps or detailed VFR/IFR charts, as shown in Figure 9.  
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Figure 8. Example weather displays using a topological background map 

 

Figure 9. Example weather display using a VFR background map 

Modern cockpit weather displays typically incorporate the following types of weather 
information (see Figure 10): 

• METARs for a specific location—Small, color-coded symbols are used to summarize 
METAR as either VFR or IFR flight conditions, according to visibility and ceiling; 

• SIGMET information—Shows advisories on weather that is significant to the safety of all 
aircraft.  Regions affected by the SIGMET are typically enclosed by a polygon (e.g., 
rectangle); 

• Lightning strikes—Regions affected by lightning strikes are marked by small symbols in 
the shape of a lightning bolt; 
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• Precipitation—Shows the intensity of precipitation overlaid on the active map; and 
• The time stamp—Contains the current date and time, and length of time in minutes since 

the display was last updated. 
 

 

Figure 10. Example of a weather display showing different weather-information symbols 

To get some stimulus variability in Experiment 1, we used two symbol sets (D1 and D3) 
previously used by Ahlstrom and Suss (2014).  The main focus of Experiment 1 is to evaluate 
whether an increase in symbol salience affects symbol discrimination.  For this purpose, we used 
the original D1 and D3 displays for a Control condition and enhanced versions of the same 
displays for the Enhanced condition.  The display enhancement implies that we increased the 
salience for three symbols; METAR, lightning, and time-stamp information.  Figure 11 shows 
the Control D1 and D3 displays, and Figure 12 shows the Enhanced D1 and D3 displays. 
 

VFR METAR 
(blue triangle) 

IFR METAR 
(yellow triangle) 

Time stamp 

Precipitation 

SIGMET 
(yellow dashed line) 

Lightning 
(lightning bolts) 
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                     (a)                                                  (b)  

Figure 11. The (a) original D1 and (b) D3 displays used in the Control condition 

 
                     (a)                                                   (b)  

Figure 12. The (a) D1 and (b) D3 displays used in the Enhanced condition 
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The Enhanced color palette was used to increase the symbol salience compared with the Control 
color palette.  Table 2 provides the color changes for each symbol element. 
 

Table 2. Color Values for the Control and Enhanced Weather Symbols 

Symbol Control Enhanced 
D1 - IFR METAR symbol Yellow RGB (231, 255, 7) Blue RGB (6, 24, 244) 

D1 – Lightning symbols White RGB (255, 255, 255) 

Yellow RGB (255, 252, 1) 

Orange RGB (252, 151, 0) 

Dark Purple RGB (150, 1, 243) 

Light Purple RGB (254, 1, 250) 

Red RGB (254, 0, 0) 

D1 - Time stamp text Black RGB (0, 0, 0) Blue RGB (6, 26, 247) 

D3 - IFR METAR symbol Red RGB (255, 0, 21) Blue RGB (6, 26, 247) 

D3 – Lightning symbols Yellow RGB (255, 251, 6) Light purple RGB (254, 1, 250) 

D3 - Time stamp text Black RGB (0, 0, 0) Blue RGB (6, 26, 247) 

 In Experiment 1, we manipulated a change of the following weather symbols: 

1. METAR—The onset/offset of 14 METAR symbols in the display; 
2. METAR—A change in the color of two groups of 7 METAR symbols; 
3. Lightning—The onset/offset of lightning symbols in the display; and 
4. Time stamp—The onset/offset of the time stamp text.  

Table 3 presents the result of the enhancement in terms of symbol salience increases as measured 
from the symbol intensity on the salience maps.  For the D1 images, we increased the salience of 
the IFR METAR symbols from the mean Control salience of 111.5 to a mean Enhanced salience 
of 252.5 (dark blue triangles).  For the D1 METAR onset/offset displays, the empty METAR 
stations had a mean salience of 8.9.  We also increased the salience of the D1 lightning bolt 
symbols (white, yellow, and orange lightning bolts) from a Control mean salience of 79 to an 
Enhanced mean salience of 159 (shown as red, light purple, and dark purple lightning bolts).  

Table 3. Salience Intensities in the Control and Enhanced Images (D1 and D3 Displays) 

 
Weather element 

D1 D3 
Control Enhanced Control Enhanced 

METAR VFR No change No change No change No change 
METAR IFR 111.5 (SD=1.7) 252.5 (SD=1.7) 150 (SD=0.53) 252 (SD=0.48) 
METAR empty background 8.9 (SD=3.6) 8.9 (SD=3.6) 22.8 (SD=22.2) 22.8 (SD=22.2) 
Lightning 79 (SD=38.3) 159 (SD=39.3) 86.4 (SD=3.1) 178.7 (SD=4.5) 
Time stamp text 97.3 (SD=8.24) 151.25 (SD=18.8) 55.6 (SD=6.24) 147.9 (SD=15.7) 

For the D3 images, we increased the Control IFR METAR symbol (red circles) from a mean 
salience from 150 to a mean Enhanced salience of 252 (shown as blue circles).  For the D3 
METAR onset/offset displays, the empty METAR stations had a mean salience of 22.8.  We also 
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increased the salience for the D3 lightning symbols (yellow X symbols) from a mean of 86.4 for 
the Control displays to a mean of 178.7 for the Enhanced displays (light purple X symbols). 

Finally, we enhanced the display of time-stamp information by increasing the salience of the text 
in the enhanced displays.  The time-stamp information displayed the time when the weather 
display was last updated.  This information was the same for all images (it never changed), with 
“July 09, 2013,” “4:10 PM,” and “5 min ago.”  In the Control D1 images, we increased the mean 
salience of the black time-stamp information from 97.3 to a mean salience of 151.25 in the 
Enhanced D1 image.  For the D3 images, we increased the Control black time-stamp text from a 
mean salience of 55.6 to a mean salience of 147.9 in the Enhanced image. 

At a viewing distance of 64 cm, the viewing angle of the experimental images (428 × 1021 
pixels) subtended 9 degrees horizontally and 20 degrees vertically. 

A manipulation of the image variables in Experiment 1 gives the following image design: 2 
(color; Control and Enhanced) x 4 (symbol change) x 2 (symbology; D1 and D3) x 2 
(replication) = 32 change trials.  In addition to these 32 change trials, we also created 32 noise 
trials (no change; the same image is shown twice) and 13 practice trials (divided into eight 
change trials and five noise trials).  This yields a total of 77 trials per participant and session.  
During each session, each participant was shown both the D1 and D3 images in random order.  
However, the independent variable color (Control and Enhanced) is a between-subjects variable, 
so each participant belonged to either the Control group or the Enhanced group. 

3.10 Independent Variable 
The independent variable in Experiment 1 is color (Control and Enhanced).  

3.11 Dependent Variables 
The dependent variables are the observed counts of hits, false alarms, misses, correct rejections, 
and the time it took participants to respond. 

3.12 Procedure 

After reading and signing the Informed Consent Statement, participants completed a biographical 
questionnaire before performing the experiment.  We explained to the participant that the task 
instructions would be presented on-screen in a self-paced manner.  After following the on-screen 
instructions, participants first completed the practice trials, followed by the experimental trials.  
We instructed the participants to respond as quickly as possible without making any errors.  
Participants could pause for as long as they wanted after each trial before continuing the 
experiment.  There was no feedback during the practice or experimental trials. 

Participants began each trial of the change-detection task by pressing the space bar on the 
keyboard.  For each trial, the participant responded to whether or not (“YES” or “NO”) a change 
occurred between Image 1 and Image 2.  The first 13 trials were practice trials, divided into eight 
signal (change) trials and five noise (no change) trials.  Following the practice trials, the same 
process was repeated for the 64 experimental trials.  Half of the 64 trials were noise trials (i.e., no 
change) with the remainder of the trials being signal trials (i.e., change).  For each participant, 
we presented the trials in random order.  
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3.13 Data Analysis 

For Experiment 1, the noise trials were created by displaying the same image for both Image 1 
and Image 2.  Because we were using “YES” and “NO” responses, we labeled each response as a 
“hit” if the participant responded “YES” to a signal trial, a “false alarm” if the participant 
responded “YES” to a noise trial, a “miss” if the participant responded “NO” to a signal trial, and 
“correct rejection” if the participant responded “NO” to a noise trial. 

From the observed counts of hits, false alarms, misses, and correct rejections, we derived indexes 
of discriminability (d) and bias (c) using an equal-variance Signal Detection Theory (SDT) 
model (Lee, 2008) and Markov Chain Monte Carlo (MCMC) sampling.  The model infers d and 
c from the hit and false alarm rates using a cumulative standard normal distribution.  The 
observed counts of hits and false alarm rates are binomially distributed.  The priors on d and c 
are Gaussian distributions, corresponding to uniform priors over the hit and false alarm rates.  
The discriminability index, d, measures how easily participants can distinguish signal trials 
(change) from noise trials (no change).  The higher the d value is, the easier it is for participants 
to detect a change, whereas a d value of 0 corresponds to random guessing.  The bias index, c, is 
a measure of the participant decision-making criterion.  If a participant has a positive value of the 
bias index, the participant has a bias to respond “NO.”  This will result in an increase in the 
number of correct rejections but will also increase the number of misses.  If a participant has a 
negative bias index, the participant displays a bias towards answering “YES,” and this leads to 
an increase in the number of hits and an increase in the number of false alarms. 

During the analysis, we used Just Another Gibbs Sampler (JAGS) (Plummer, 2003, 2011) that 
we called from R (R Development Core Team, 2011) via the package rjags.  All software for the 
analysis and figure generation is adapted program code from Lee (2008) and Kruschke (2014).  

The Bayesian analysis generates a posterior distribution, which is a distribution of credible 
parameter values.  We can use this large distribution of representative parameter values to 
evaluate certain parameters or to compare differences between parameters.  Here, we use a 
separate decision rule to convert our posterior distributions to a specific conclusion about a 
parameter value.  When plotting the posterior distribution, we include a black horizontal bar that 
represents the 95% High Density Interval (HDI).  The HDI has a higher probability density 
compared to values that fall outside the HDI.  When we compare conditions (i.e., perform 
contrasts), we compute differences at each step in the MCMC chain and present the result in a 
histogram along with the HDI.  These histograms show both credible differences and the 
uncertainty of the outcome.  If the value 0 (implying zero difference) is not located within a 95% 
HDI, we say that the difference is credible.  If the 95% HDI includes the value 0, the difference 
is not credible because it means that a difference of 0 is a possible outcome. 

For response time effect size analyses, we are using a Region of Practical Equivalence (ROPE).  
The ROPE contains values that, for all practical purposes, are the same as a null effect (i.e., no 
meaningful difference).  If the 95% HDI falls completely within the ROPE margins for an effect 
size, we can declare the presence of a null effect, and unlike traditional analyses, we can accept 
the null outcome.  If, however, the entire ROPE falls outside the 95% HDI, we can reject the 
presence of a null effect. 
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To derive the posterior distributions, we used 200,000 samples.  For all analyses, we used priors 
that were vague and noncommittal on the scale of the data. 

3.14 Results 
3.14.1 Age Effects on Symbol Discrimination Accuracy 

In the following sections we present SDT analyses on the lightning, METAR, and time stamp 
data.  First, we assessed if participant age affects symbol discrimination accuracy in the pooled 
dataset (i.e., we combined the data from all METAR, lightning, and time-stamp trials).  Second, 
we assessed the effect of color (i.e., salience) on discriminability.  Third, we repeated the age-
affect analysis for each symbol condition separately.  Fourth, we performed ex-Gaussian 
response time analyses to assess potential differences in symbol response time.  

One way to assess the main effect of age (x) on discrimination accuracy (y) is to use simple 
linear regression, allowing a prediction of participant discrimination accuracy from their age.  As 
a first step in this analysis, we computed a simple discrimination index d' (Stanislaw & Todorov, 
1999) for each participant and symbol condition: 

𝑑𝑑′ = min (0,Φ�
ℎ + 1

ℎ + 𝑚𝑚 + 2
� − Φ�

𝑓𝑓𝑓𝑓 + 1
𝑓𝑓𝑓𝑓 + 𝑐𝑐𝑐𝑐 + 2

�) 

where h is the number of hits, m the number of misses, fa the number of false alarms, and cr the 
number of correct rejections.  We then used one d’ value (per symbol condition) per participant 
for the regression analysis. 

We used a robust linear regression model (Kruschke, 2014) where each predicted y value is 
computed as y = β0 + β1x, where β0 is the y-intercept (where the regression lines intersect the y-
axis when x=0), and β1 is the slope (indicates how much y increases when we increase x by 1).  
To be robust against outliers, the model uses a t-distribution for the noise distribution instead of a 
normal distribution (i.e., Gaussian distribution).  At the lowest level of the model, each datum 
comes from a t-distribution with a mean µ, a scale parameter (i.e., standard deviation) σ, and a 
normality parameter v.  The prior on the scale parameter is a broad uniform distribution, and the 
normality parameter v has a broad exponential prior.  Both β0 and β1 have broad normal priors 
that are noncommittal and vague on the scale of the data. 

Figure 13 shows the outcome of the regression analysis.  On the x-axis, we have participant age 
and on the y-axis, discrimination accuracy (d’).  The black circles are the data points; one d’ 
value per participant and symbol condition (i.e., METAR, lightning, and time-stamp conditions).  
The lines represent regression lines, and the three vertical distributions are superimposed t-
distributed noise distributions. 
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Figure 13. Regression lines and noise distributions for the prediction of d’ from age 

As we can see in the figure, the regression lines are tightly clustered and have a negative slope, 
meaning that discrimination accuracy (y) for weather symbols decreases with an increasing age 
(x). 

Figure 14 shows the mean posterior outcome for β0 (intercept), β1 (slope), and the scale 
parameterσ.  The intercept has a mode of 1.7, which is the value of y when x = 0.  The credible 
slope has a posterior mode of -0.0113.  This means that as we increase x (age) by 1, y will 
increase by the value of β1.  In this case, the slope is negative, so for each year of x (Age), y (d’) 
will decrease by the value of β1.  

 

 

Figure 14. The posterior intercept (β0), slope (β1), and scale (σ) parameters from the robust 
linear regression analysis 
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There are several ways to use the predictive outcomes of the linear regression model.  For 
example, we can compute a simple point estimate of the predicted d’ from a given value of age.  
In the following, we will use examples for age = 20 years and age = 70 years because these 
values are on the opposite sides of the age scale (x).  The following is a prediction for age = 20: 
If we have y=1.7 (intercept) + -0.0113 (slope) * 20 (age), the outcome is y=1.472.  This means 
that for age = 20, the model predicts a d’ of 1.474. Likewise, for age = 70: y = 1.7 (intercept) + -
0.0113 (slope) * 70 (age) = 0.909.  That means for age = 70, the model predicts a d’ of 0.90, 
which is a substantially lower discriminability than the predicted d’ of 1.472 for age =, 20.  

A drawback with the simple point estimates above is the fact that we only derive one d’ value 
without any distributional information or estimates of uncertainty.  However, using the power of 
Bayesian estimation, we can compute posterior distributions of predicted values of d’ (y) for a 
given value of age (x).  We do this by randomly simulating a y value from the model using 
parameter values at each step in the MCMC chain.  The resulting distribution is the y values for 
the posterior predictive distribution at x.  

Figure 15 shows the posterior distributions from the MCMC sampling of predicted mean values 
of d’ (y) for x1 = 20 and x2 = 70.  Besides providing an estimate of the mean predicted d’, we get 
distributional information with uncertainty specified by the width of the 95% HDI.  As we can 
see in the figure, there is a fair amount of uncertainty in our posterior predictions.  This is 
expected because we are using d’ values from three different symbol conditions (i.e., METAR, 
lightning, and time-stamp conditions), and we know from previous research that discriminability 
varies for different symbols (Ahlstrom & Suss, 2014; Ahlstrom, Caddigan, Schulz, Ohneiser, 
Bastholm & Dworsky, 2015a, 2015b).  Nevertheless, the model predicts age-related differences 
for which the average discriminability for 20-year olds is approximately 62% higher than the 
average discriminability for 70-year olds. 

 

Figure 15. The posterior predicted distributions and mean d’ values for x1 = 20 years  
and x2 = 70 years 

In summary, a robust linear regression on all the d’ symbol data revealed an overall effect of 
participant age on discrimination accuracy.  Therefore, we performed the same analysis 
separately for each one of the three symbol conditions. 
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3.14.2 Lightning Symbols 

In Figures 16 and 17, we show the displays used to evaluate lightning changes in the Control and 
Enhanced conditions, respectively.  

During Experiment 1, the signal trials (change) for the Control condition displayed the two left-
most images in Figure 16 for D1 trials (see Figure 16 (a) and (b)), and the two right-most images 
for the D3 trials (see Figure 16 (c) and (d)).  The D1 and D3 signal trials for the Enhanced 
condition were displayed in the same manner and are shown in Figure 17. 

The left side of the D1 and D3 image pairs shows the experimental image without lightning 
symbols, and the right side of the D1 and D3 image pairs shows the image with lightning 
symbols.  During half of the trials, the left image was displayed as Image 1, and the right image 
was displayed as Image 2, and vice versa. For the D1 and D3 noise trials (no change), Image 1 
and Image 2 both displayed the same left or the same right image.  For each trial during the 
experiment, the participant responded to whether or not (“YES” or “NO”) a change occurred 
between Image 1 and Image 2.  

 

 
           (a)      (b)    (c)    (d) 

Figure 16. Illustration of the lightning Control condition stimuli: (a) control D1 display without 
lightning symbols; (b) control D1 display with lightning symbols; (c) control D3 display without 

lightning symbols; and (d) control D3 display with lightning symbols  
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           (a)      (b)    (c)    (d) 

Figure 17. Illustration of the lightning Enhanced condition stimuli: (a) enhanced D1 display 
without lightning symbols; (b) enhanced D1 display with lightning symbols; (c) enhanced D3 

display without lightning symbols; and (d) enhanced D3 display with lightning symbols 

Figure 18 shows the posterior discriminability (d) and bias (c) for the main effect of salience on 
the change-detection performance for lightning symbols in the Control and Enhanced conditions.  
The points in Figure 18 represent individual subjects where the Enhanced condition (2/Blues) are 
clustered in the higher discriminability and lower bias than the Control conditions (1/Reds) with 
little overlap between clusters.  
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Figure 18. The posterior discriminability index (d) and bias (c) for the lightning Control and 
Enhanced conditions 

Figure 19 shows the posterior d and contrast for the Control and Enhanced conditions.  As 
predicted, the mean d is higher for the Enhanced displays (d = 0.8) than the Control displays  
(d = 0.44).  The contrast on the Control versus Enhanced differences is credible, with a mean d 
difference of -0.35. 

 

Figure 19. The posterior d and contrast for the Control and Enhanced lightning conditions 

In addition to the credible difference in discriminability, there was also a difference in bias 
between the Control (mean c = 0.80; 95% HDI from 0.72–0.88) and the Enhanced (mean c = 0.6; 
95% HDI from 0.52–0.67) conditions.  Participants in the Control conditions had a greater 
propensity for responding “NO” during the trials.  The contrast on the c difference was credible, 
with a mean c difference of 0.20 (95% HDI from 0.10–0.31). 
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3.14.3 Age Effects on Discriminability for Lightning Symbols 

To assess the effect of age on lightning symbol discriminability, we performed a linear 
regression on the d’ data (using all trials for each participant).  Figure 20 shows the outcome of 
the linear regression analysis.  On the x-axis, we have participant age, and on the y-axis is 
discrimination accuracy.  As shown by Figure 20, the credible regression lines have a negative 
slope, meaning that discrimination accuracy for lightning symbols decreases with an increasing 
age. 

 

Figure 20. Credible regression lines and noise distributions for the prediction of  
lightning d’ from age 

Figure 21 shows the mean posterior outcome for β0, β1, and σ.  The intercept has a mode of 1.46, 
and the credible slope has a posterior mode of -0.0133.  This means that for each year of 
age, the model predicts that discrimination performance (d’) for lightning symbols 
decreases by -0.0133. 

 

Figure 21. The posterior intercept (β0), slope (β1), and scale (σ) parameters for  
lightning trials 
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Figure 22 shows the posterior distributions of predicted mean values of d’ (y) for x1 = 20 and x2 = 
70. For x1 = 20 years, the model predicts a mean d’ of 1.19, and for x2 = 70 years, the model 
predicts a mean d’ of 0.524. 
 

 

Figure 22. The posterior predicted distributions and mean d’ values for lightning symbols with 
x1 = 20 years and x2 = 70 years 

When analyzing the D1 lightning condition separately, we find a mean discriminability of 0.95 
(95% HDI from 0.7–1.2) for the younger pilots (age 59 and younger) and a mean 
discriminability of 0.38 (95% HDI from 0.05–0.7) for the older pilots (age 60 and older).  The 
contrast of this difference is credible, with a mean discriminability difference of 0.6 (95% HDI 
from 0.15–0.99).  For the D3 condition, however, there is no credible difference in 
discriminability between the younger (M = 0.45, 95% HDI from 0.2–0.7) and the older  
(M = 0.24, 95% HDI from -0.09–0.6) pilots (M difference = 0.2, 95% HDI from -0.22–0.64). 

In summary, the overall discriminability of lightning symbols is low, meaning that participants 
had a difficult time discriminating lightning signal trials from lightning noise trials.  However, 
there is a credible main effect of color (i.e., salience) on discriminability where participants 
exhibited a greater discriminability for lightning symbols in Enhanced displays than Control 
displays.  In addition to this main result, we also find credible effects of age on discriminability, 
with younger pilots (59 years of age and younger) exhibiting an increased discriminability for D1 
lightning displays compared with older pilots (60 years of age and older).  

3.14.4 Response Time for Lightning Displays 

Response time distributions are not symmetrical Gaussian distributions (i.e., normal 
distributions).  On the contrary, response time data are skewed distributions with a steep rise on 
the left side and a long tail on the right side (Whelan, 2008).  Despite this, it is common to base a 
response time analysis on the mean response time for each participant. However, this type of 
analysis does not take the response time distribution’s shape into account and will, therefore, 
obscure important aspects of participant response behavior (Heathcote, Popiel, & Mewhort, 
1991).  We would like to use all the response time responses (i.e., use all the data from the 
underlying response distribution).  Furthermore, because of the skewed distribution for response 
time data, we cannot use an analysis method that is based on the normal or Gaussian likelihood.  



25 

 

A distribution that fits response time data well is the ex-Gaussian distribution (Matzke & 
Wagenmakers, 2009).  This distribution is a combination of a Gaussian distribution and an 
exponential distribution.  Figure 23 shows a response time dataset in the form of histograms.  
The left histogram shows an analysis using a normal distribution; the right histogram shows a 
response time analysis using the ex-Gaussian distribution.  The blue lines superimposed on the 
data represent a posterior predictive check.  This is to test that our model provides a good fit to 
the data. As we can see in Figure 23(a), the normal likelihood model provides a poor fit to the 
response time data.  On the contrary, the ex-Gaussian distribution in Figure 23(b) provides a 
good fit to the response time data. 

 
             (a)                      (b)  

Figure 23. A comparison of response time data analyses using a (a) normal distribution vs. (b) an 
ex-Gaussian distribution; the blue lines represent a posterior predictive check, verification that 

the model provides a good fit to the response time data 

The Gaussian portion of the ex-Gaussian distribution is described by the parameters µ (mean) 
and σ (standard deviation), whereas the parameter τ describes both the mean and the standard 
deviation of the exponential component.  The mean of the ex-Gaussian is given by µ + τ and the 
variance by σ2 + τ2. 

For the present ex-Gaussian response time analysis, we used a Bayesian between-subjects model.  
At the lowest level of the model, we have the individual response times, coming from an ex-
Gaussian distribution with a mean, µ, and a standard deviation, σ.  The prior on µ is a normal 
distribution, and the prior on σ is a uniform distribution, with both priors being vague and 
noncommittal on the scale of the data.  

Before running the analyses on our experimental data, we first used the rexgauss function 
(Massidda, 2013) to generate synthetic response time data with known parameter values (i.e., µ = 
3.7, σ = 0.8, τ = 2.19).  Subsequently, we ran three separate ex-Gaussian analyses on the 
synthetic datasets (10,000 response time data points each).  If our ex-Gaussian model works 
correctly, it should be able to recover the known parameter values.  The result from the analyses 
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showed mean parameter values for µ = 3.71 (SD = 0.01), σ = 0.80 (SD = 0.01), and τ = 2.17 (SD 
= 0.03), which imply that our ex-Gaussian model correctly recovered the generating parameters. 

For the present analysis, we are interested in the main effect of color on response time.  
Therefore, we pooled the D1 and D3 data for the Control and Enhanced conditions separately, 
using all response times for each subject for the signal trials only.  Figure 24 shows the outcome 
of the analysis for the lightning Control (top) and lightning Enhanced (bottom) conditions.  As is 
clear from the figure, the mean response times for the two conditions are virtually identical (M of 
ex-Gaussian=1.01; 95% HDIs from 0.95–1.07).  Consequently, for the lightning symbols used in 
Experiment 1, there is no main effect of symbol salience (Control versus Enhanced) on symbol 
response time. 

 

Figure 24. Response time data (a & d) with the mean (b & e) and variance (c & f) of the ex-
Gaussian distribution for the Control (a–c) and Enhanced (d–f) conditions 

3.14.5 Age Effects on Response Time for Lightning Displays 
In addition to the main effect of color on lightning symbol response time, we also assessed the 
effect of age on response time.  We performed a linear regression on the response time data 
(using all lightning trial response times for each participant).  As we can see from Figure 25, 
there is a slight positive slope on the regression lines indicating that the response times increase 
with increasing age. 
 

(a) (b) (c) 

(d) (e) (f) 
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Figure 25. Credible regression lines and noise distributions for the prediction of lightning 
response time (sec) from age (years) 

Figure 26 shows the mean posterior outcome for β0 (intercept), β1 (slope), and the scale 
parameter, σ. The intercept has a mode of 0.5, which is the value of y when x = 0.  The credible 
slope has a posterior mode of 0.00753.  This means that as we increase x (age) by 1, y will 
increase by the value of β1.  

 

Figure 26. The posterior intercept (β0), slope (β1), and scale (σ) parameters for  
response time on lightning trials 

Figure 27 shows the posterior distributions of predicted mean values of response time (y) for x1 = 
20 and x2 = 70. For x1 = 20 years, the model predicts a mean response time of 0.66 sec, and for x2 
= 70 years, the model predicts a mean response time of 1.0 sec. 
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Figure 27. The posterior predicted distributions and mean response time values for lightning 
symbols with x1 = 20 years and x2 = 70 years 

3.14.6 METAR Symbols 

We used two different METAR symbol color changes for both the Control and the Enhanced 
conditions.  The first is a color change in which all the 14 METAR symbols changes color 
between Image 1 and Image 2 for signal (change) trials or stay the same between Image 1 and 
Image 2 for noise (no change) trials.  The second METAR condition is an on/off change for 
which there are no METAR symbol colors (i.e., empty METAR symbol background) in the first 
image, but there are in the second image (and vice versa).  Figure 28 shows the METAR symbol 
color changes for the D1-D3 Control condition, and Figure 29 shows the symbol changes for the 
D1-D3 Enhanced condition.  Figure 30 shows the METAR symbol on/off changes for the D1-D3 
Control condition, and Figure 31 shows the METAR on/off changes for the D1-D3 Enhanced 
condition. 

During the experiment, color changes were introduced in the D1 and D3 signal (change) trials by 
displaying, for example, the leftmost image in Figure 28 (light blue triangles) as Image 1 and the 
second leftmost image as Image 2 (yellow triangles).  Here, there is a METAR symbol color 
change between Image 1 and Image 2.  For the noise (no change) trials, we displayed the same 
image for Image 1 and Image 2. 

For the D1 and D3 METAR symbol on/off changes shown in Figure 30, Image 1 contained no 
METAR color symbols (i.e., empty METAR backgrounds), whereas Image 2 displayed 14 
METAR symbols in two different colors (and vice versa).  For example, for the D3 Control 
condition in Figure 30 (the two rightmost images), Image 1 could display empty METAR 
stations, whereas Image 2 displayed 7 white and 7 red METAR symbols (and vice versa).  
Again, for the noise (no change) trials, we displayed the same image for Image 1 and Image 2. 
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    (a)      (b)    (c)    (d) 

Figure 28. Illustration of the METAR Control condition stimuli for color changes: (a) Control 
D1 display with light blue METAR symbols; (b) Control D1 display with yellow METAR 

symbols; (c) Control D3 display with white METAR symbols; and  
(d) Control D3 display with red METAR symbols 

 
   (a)      (b)    (c)    (d) 

Figure 29. Illustration of the METAR Enhanced condition stimuli for color changes: (a) 
Enhanced D1 display with light blue METAR symbols; (b) Enhanced D1 display with dark blue 
METAR symbols; (c) Enhanced D3 display with white METAR symbols; and (d) Enhanced D3 

display with dark blue METAR symbols 
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   (a)      (b)    (c)    (d) 

Figure 30. Illustration of the METAR Control condition stimuli for on/off METAR changes: (a) 
Control D1 display with unfilled METAR symbols; (b) Control D1 display with 7 yellow and 7 

light blue METAR symbols; (c) Control D3 display with 7 red and  
7 white METAR symbols; and (d) Control D3 display with red METAR symbols 

 
   (a)      (b)    (c)    (d) 

Figure 31. Illustration of the METAR Enhanced condition stimuli for on/off METAR changes: 
(a) Enhanced D1 display with unfilled METAR symbols; (b) Enhanced D1 display with 7 dark 

blue and 7 light blue METAR symbols; (c) Enhanced D3 display with unfilled METAR symbols; 
and (d) Enhanced D3 display with 7 dark blue and 7 white METAR symbols 
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In a first analysis, we assessed the main effect of salience on discriminability.  Figure 32 shows 
the posterior discriminability (d) and bias (c) for the effect of salience on the change-detection 
performance for METAR symbols (color change plus on/off trials) in the Control and Enhanced 
conditions. 
 

 

Figure 32. The posterior discriminability (d) and bias (c) for the Control and Enhanced METAR 
conditions 

As shown in Figure 33, the mean posterior d for the Control condition is 1.8, whereas it is 2.0 for 
the Enhanced condition.  The contrast on the difference is credible (i.e., the value 0 is not located 
within the 95% HDI), with a mean posterior difference of -0.22.  There was also a difference in 
bias between the Control (mean c = 0.13; 95% HDI from 0.06–0.2) and the Enhanced (mean c = 
-0.01; 95% HDI from -0.08–0.05) conditions.  Participants in the Control conditions had a 
greater propensity for responding “NO” during the trials.  The contrast on the c difference was 
credible, with a mean c difference of 0.14 (95% HDI from 0.05–0.23). 

 

Figure 33. The posterior discriminability and contrast for the Control and Enhanced METAR 
symbols 
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In the Ahlstrom and Suss (2014) study, researchers found a credible difference in 
discriminability between METAR triangle symbols and METAR circle symbols, with circles, on 
average, yielding higher discrimination performance than triangles.  Here, we also assessed 
whether the discriminability was lower for D1 trials (triangles) compared with D3 trials (circles).  
The SDT analysis revealed that the mean discriminability was 1.82 (95% HDI from 1.7–1.9) for 
triangles and 1.92 (95% HDI from 1.8–2.0) for circles.  Although the discriminability is slightly 
higher for circles, the contrast on triangles and circles was not credible (M difference = -0.1, 95% 
HDI from -0.25–0.05).  Therefore, in the present experiment, participant discrimination accuracy 
was the same for METAR triangle and METAR circle symbols. 

3.14.6.1 Age Effects on Discriminability for METAR Symbols 

Figure 34 shows the outcome of a regression analysis using participant age (x) and d’ (y), based 
on the METAR data.  The credible regression lines are tightly clustered, and they all have a 
negative slope.  This means that the discrimination accuracy for METAR symbols decreases with 
an increasing age. 

 

Figure 34. Credible regression lines and noise distributions for the prediction of  
METAR d’ from age 

Figure 35 shows the mean posterior outcome for the intercept (β0), the slope (β1), and the scale 
(σ) parameters.  The intercept has a mode of 2.38, and the credible slope has a posterior mode of 
-0.0152.  This means that for each year of age, the model predicts that discrimination 
performance (d’) for METAR symbols decreases by -0.0152. 
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Figure 35. The posterior intercept (β0), slope (β1), and scale (σ) parameters for  
METAR trials 

Figure 36 shows the posterior distributions of predicted mean values of d’ (y) for x1 = 20 and x2 = 
70.  For x1 = 20 years, the model predicts a mean d’ of 2.09, and for x2 = 70 years, the model 
predicts a mean d’ of 1.33. 

 

Figure 36. The posterior predicted distributions and mean d’ values for METAR symbols with x1 
= 20 years and x2 = 70 years 

When analyzing the D1 color change trials separately, we find a differential effect for the 
younger and older pilots.  Although there was no credible difference in discriminability between 
the METAR symbol D1 Control and METAR symbol D1 Enhanced versions for the older pilots 
(Control: M = 1.6, 95% HDI from 1.39–1.86; Enhanced: M = 1.5; 95% HDI from 1.17–1.8; 
mean difference = -0.15, 95% HDI from -0.22–0.53), the younger pilots exhibit an increased 
discriminability in the Enhanced condition (M = 2.94, 95% HDI from 2.38–3.5) compared with 
the Control condition (M = 2.2, 95% HDI from 1.93–2.5).  This difference was credible with a 
mean difference of -0.70 (95% HDI from -1.35–-0.06). 

We also find a differential effect for the D3 METAR color change trials.  Here, there was no 
credible difference between the Control versus Enhanced trials for the older pilots (Control M = 
1.6, 95% HDI from 1.3–1.9; Enhanced M = 1.5, 95% HDI from 1.12–1.9; M difference = 0.10, 
95% HDI from -0.41–0.62).  For the younger pilots, however, there was a higher discriminability 
for the Control condition stimuli (M = 3.1, 95% HDI from 2.46–3.75) compared with the 
Enhanced condition stimuli (M = 2.17, 95% HDI from 1.9–2.45) with a credible mean difference 
of 0.92 (95% HDI from 0.23–1.63). 
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For the D1 METAR on/off changes, the older pilots exhibited an increased discriminability for 
the Enhanced condition (M = 1.6, 95% HDI from 1.2–2.08) compared with the Control condition 
(M = 1.05, 95% HDI from 0.7–1.36) with a credible mean posterior difference of -0.6 (95% HDI 
from -1.11–-0.05).  For the younger pilots, however, there was no credible difference in 
discriminability between the Control (M = 2.1, 95% HDI from 1.8–2.4) and the Enhanced (M = 
2, 95% HDI from 1.7–2.2) conditions (contrast M =-.14, 95% HDI from -0.24–0.5). 

For the D3 METAR on/off trials, there was no credible difference between the Control (M = 1.4, 
95% HDI from 1.08–1.7) and Enhanced (M =1.24, 95% HDI from 0.8–1.6) conditions for the 
older pilots (M difference = 0.148, 95%HDI from -0.36–0.65) or the younger pilots (Control M = 
2, 95% HDI from 1.8–2.4; Enhanced M = 1.9, 95% HDI from 1.7–2.2; M difference = 0.13, 95% 
HDI from -0.26–0.52).  

In summary, there is a credible main effect of color (i.e., salience) on discriminability where 
participants exhibited a greater discriminability for METAR symbol changes in Enhanced 
displays than METAR symbol changes in Control displays.  However, we also find a main effect 
of age on discriminability where the discrimination accuracy for METAR symbols decreases 
with an increasing age.  In addition, there are also differential effects of age on discriminability 
for METAR symbols.  For the D1 (METAR triangles) and D3 (METAR circles) color trials, 
there is no credible effect of the Enhanced stimuli on discriminability for older pilots.  
Conversely, younger pilots exhibit an increased discriminability for the Enhanced symbols in the 
D1 condition but not in the D3 condition.  For the METAR D1 on/off trials, the older pilots 
exhibit an increased discriminability for the Enhanced condition.  For the younger pilots, there is 
no credible difference between the Control and Enhanced condition.  For the D3 on/off 
condition, there is no effect of the Enhanced METAR stimuli for the older pilots or the younger 
pilots.  Finally, we found no credible difference in discriminability between the METAR triangle 
(D1) and the METAR circle (D3) conditions. 

3.14.6.2 Response Time for METAR Displays 
For the response time analysis, we were mainly interested in the main effect of color on response 
time, and, therefore, we pooled the D1, D3, color change, and on/off change data for the Control 
and Enhanced conditions separately using all response times for each subject (signal trials only).  
Figure 37 shows the outcome of the analysis for the METAR Control (see Figure 37(a–c) and 
METAR Enhanced (see Figure 37[d–f]) conditions.  As is clear from the figure, the mean 
response times for the two conditions are very similar, with a mean of ex-Gaussian = 0.84 sec for 
the Control condition and 0.88 sec for the Enhanced condition.  The contrast on this difference 
was not credible, because the value 0 was located within the 95% HDI (mean difference = -
0.032; 95% HDI from -0.08–0.021). 
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Figure 37. METAR response time data (a & d) with the mean (b & e) and variance (c & f) of the 
ex-Gaussian distribution for the Control (a–c) and Enhanced (d–f) conditions 

In summary, there are no credible differences in response time between the METAR 
Control and Enhanced conditions.  

3.14.6.3 Age Effects on Response Time for METAR Symbols 

Figure 38 shows the outcome of a METAR regression analysis using participant age (x) 
and response time (y).  

(a) (b) (c) 

(d) (e) (f) 
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Figure 38. Regression lines and noise distributions for the prediction of  
METAR response time from age 

As show in Figure 39, the intercept has a mode of 0.45, and the credible slope has a posterior 
mode of 0.006.  This means that for each year of age, the response time for discriminability of 
METAR symbols increases by 0.006 sec. 

 

Figure 39. The posterior intercept (β0), slope (β1), and scale (σ) parameters for  
METAR response time 

Figure 40 shows the posterior distributions of predicted mean values of response time (y) for x1 = 
20 and x2 = 70.  For x1 = 20 years, the model predicts a mean response time of 0.6, and for x2 = 70 
years, the model predicts a mean response time of 0.86. 
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Figure 40. The posterior predicted distributions and mean response time values for METAR 
symbols with x1 = 20 years and x2 = 70 years 

In summary, a regression analysis using participant age and response time revealed that for each 
year of age, there is an associated increase in response time for discriminability of METAR 
symbols. 

3.14.7 Time-Stamp Information 

During Experiment 1, we used two different time stamp colors.  For the D1 and D3 Control 
conditions, time-stamp information was presented in black text at the top of the displays.  For the 
Enhanced D1 and D3 conditions, the time-stamp information was presented in a blue color 
(enhanced salience) at the top of the displays. Figure 41 shows the Control ((a): D1; (b): D3) and 
Enhanced ((c): D1; (d): D3) time-stamp conditions.  The salience differences between the 
Control and Enhanced conditions are shown in Table 3. 

 

Figure 41. The Control ((a): D1; (b): D3) and Enhanced ((c): D1; (d): D3) time-stamp conditions 

During Experiment 1, the signal trials (change) for the Control condition displayed the top-left 
image (D1) or the top-right image (D3) as Image 1 or Image 2, and compared this to an image 
that looked the same but was lacking a time stamp.  The same pairwise comparison was used for 

(a) (b) 

(c) (d) 
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the D1 and D3 signal trials for the Enhanced condition.  Noise trials for both conditions were 
created by displaying the same image for Images 1 and 2. 

Figure 42 shows the posterior discriminability (d) and bias (c) for the main effect of salience on 
the change-detection performance for time stamps in the Control and Enhanced conditions.  As 
we can see in the figure, the discrimination performance is very low for both conditions with 
performance for the Control condition at random guessing. 

 

Figure 42. The posterior discriminability (d) and bias (c) for the Control and Enhanced time-
stamp conditions 

As shown in Figure 43, the mean posterior d for the Control condition is 0.009, whereas it is 
0.184 for the Enhanced condition.  Although the mean discriminability for the Enhanced 
condition is higher than the Control condition, the contrast is not credible because the value 0 is 
located within the 95% HDI (mean posterior difference of -0.18). 
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Figure 43. The mean posterior d and contrast for the Control and  
Enhanced time-stamp conditions 

In summary, participants had great difficulty in discriminating signal and noise trials for the 
time-stamp displays, regardless of the time-stamp color.  The discrimination performance is very 
low for both the Control and Enhanced conditions, with performance for the Control condition at 
random guessing. 

3.14.7.1 Age Effects on Discriminability for Time-Stamp Information 

Figure 44 shows the outcome of a regression analysis using participant age (x) and d’ (y) for all 
the time-stamp trials. 

 

Figure 44. Linear regression lines and noise distributions for the prediction of d’ from age for 
time-stamp trials 
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As shown in Figure 45, the intercept has a mode of 0.61, and the slope has a posterior mode of -
0.003. However, because the value 0 is included in the 95% HDI, the slope is not credible.  A 
slope of 0 is among the credible outcomes.  Therefore, there are no credible effects of age on 
time-stamp discriminability.  The discriminability is equally low for all levels of age. 

 

Figure 45. The posterior intercept (β0), slope (β1), and scale (σ) parameters for the prediction of 
time-stamp d’ 

In summary, a linear regression analysis on the effect of age on time-stamp discriminability 
showed no credible effect of age.  Participant performance is equally low regardless of age. 

3.14.7.2 Response Time for Time-Stamp Information 

For the time stamp response time analysis, we were mainly interested in the main effect of color 
on response time, and we therefore pooled all the data for the Control and Enhanced conditions 
separately using all response times for each subject (signal trials only).  Figure 46 shows the 
outcome of the analysis for the time-stamp Control (see Figure 46(a–c)) and time-stamp 
Enhanced (see Figure 46(d–f)) conditions.  As is clear from the figure, the mean response times 
for the two conditions are similar with a mean of ex-Gaussian = 1.03 sec for the Control 
condition and 1.12 sec for the Enhanced condition. 
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Figure 46. Time stamp response time data (a & d) with the mean (b & e) and variance (c & f) of 
the ex-Gaussian distribution for the Control (a–c) and Enhanced (d–f) conditions 

However, a contrast showed this difference to be credible with a mean posterior difference of -
0.10 (95% HDI from -0.19 to -0.001).  Although credibly different, the mean posterior effect size 
for the difference was only -0.14 (95% HDI from -0.28 to -0.004) with 80% of the posterior 
distribution located within the ROPE (-0.2–0.2).  Therefore, the difference in response time 
between the Control and the Enhanced displays are essentially the same for practical purposes. 

In summary, there is a tiny but credible effect of color on time-stamp response time.  However, 
because of the small effect size for this difference—and the fact that performance is at or close to 
random guessing—there is no meaningful difference between the Control and the Enhanced 
condition response times. 

3.14.7.3 Age Effects on Response Time for Time-Stamp Information 

We also assessed the presence of age effects on response time for the time-stamp change-
detection trials.  Figure 47 shows the outcome of a regression analysis using participant age (x) 
and d’ (y) on all the time-stamp signal trials. 

 

(a) (b) (c) 

(d) (e) (f) 
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Figure 47. Time-stamp regression lines and noise distributions for the prediction of  
response time from age 

Figure 48 shows the mean posterior outcome for the intercept (β0), the slope (β1), and the scale 
(σ) parameters.  The intercept has a posterior mode of 0.60, and the credible slope has a posterior 
mode of 0.006.  

 

Figure 48. The posterior intercept (β0), slope (β1), and scale (σ) parameters for the prediction of 
time-stamp response time 

Figure 49 shows the posterior distributions of predicted mean values of response time (y) for x1 = 
20 and x2 = 70.  For x1 = 20 years, the model predicts a mean response time of 0.73, and for x2 
=70 years, the model predicts a mean response time of 1.06. 
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Figure 49. The posterior predicted distributions and mean response time values for time-stamp 
information with x1 = 20 years and x2 = 70 years 

In summary, the mean d for discrimination of time-stamp signal and time-stamp noise trials is 
very low, equaling the performance from random guessing.  Although the performance is 
nominally higher for the Enhanced condition, the difference is minimal, which shows that an 
increase in the time-stamp salience does not improve performance beyond random guessing.  
Furthermore, at this low level of discriminability, there is no meaningful effect of age on change-
detection performance. 

4 EXPERIMENT 2 

Ahlstrom and Suss (Ahlstrom & Suss, 2015) examined change-detection performance for 
weather symbols, like METARs, lightning strikes, precipitation areas, and SIGMET outlines.  
They found that change-detection accuracy varies depending on the symbol color and shape.  As 
shown in Figure 9, however, there can be many other features in complex weather displays that 
provide important information.  For example, solid lines or line segments are important because 
they define different classes of airspace and airspace boundaries.  Line segments also define 
routes, airports, runways, airways, state lines, latitude and longitude scales, and military 
operations areas, to mention a few.  Furthermore, the various lines and line segments are 
depicted in varying colors, thicknesses, and orientations. 

Although we have empirical data on change-detection performance for weather symbols, less is 
known about observer sensitivity to changes in line segments in complex weather displays.  This 
is an important topic because line segments are used to display user-defined routes and can be an 
important part of graphical display notifications for both air traffic controllers and pilots 
(Ahlstrom, 2015; Ahlstrom & Jaggard, 2010). 

The purpose of Experiment 2 was to assess the effect of color (i.e., salience) on discriminability 
of line segments in complex weather displays. 
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4.1 Method 

4.2 Participants 

Twenty-four males volunteered to participate in Experiment 2.  None of the participants 
participated in Experiment 1.  Thirteen of the twenty-four participants were pilots, and we 
present their background information in Table 4. 

Table 4. Descriptive Characteristics of Study Participants 

              

      Flight hours accrued 
              
              

   
Age (years) 

 
Total  Instrument  

Instrument – 
last 6 months 

              
              

 N  Mdn Range  Mdn Range  Mdn Range  Mdn Range 
              
              

 13  55 26–65  1490 230–9,000  60 4–800  12 0–80 
              
 11  37 24–60  N/A N/A  N/A N/A  N/A N/A 
              

Similar to Experiment 1, participants were excluded from participation in Experiment 2 if they 
had a personal or familial history of epilepsy.  No participants reported a history of epilepsy.  

4.3 Experimental Stimuli 

In Experiment 2, we evaluated change-detection performance for line segments that were 
superimposed on a complex weather display.  That is, the line segments were superimposed on a 
VFR background map that also contained precipitation, special-use airspace (SUA) areas, and 
lightning information.  At a viewing distance of 64 cm, the viewing angle of the experimental 
images (600 × 600 pixels) subtended 13 degrees horizontally and 13 degrees vertically. 

To create some variation in the stimuli, we varied the line segment color (i.e., black, red, and 
blue), thickness (i.e., thin = 3 pixels, medium = 6 pixels, and thick = 9 pixels), orientation (i.e., 
vertical, horizontal, and oblique), and position (i.e., upper left, lower left, upper right, and lower 
right quadrants).  To create some variation in the background maps, we rotated an original map 
in steps of 90 degrees to create four background configurations.  These image manipulations 
resulted in a 4 (Background) x 3 (Line width) x 3 (Line Orientation) x 4 (Line Position) x 2 
(Trial type) = 288 images for each of the 3 line colors.  There was no replication of the signal 
trials; participants only saw each signal (change) trial once. Only the 288 noise (no change) trials 
were replicated throughout the experiment. 

Although these stimuli manipulations allow us to analyze the effect of background, orientation, 
and trial types, for the present analysis, we are only interested in the main effects of line color 
and thickness on change-detection performance.  Figure 50 shows examples of the line stimuli in 
different colors, locations, orientations, and thicknesses.  
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(a) 

 
(b) 

 
(c) 

Figure 50. Example weather display using a VFR background map: (a) thick oblique lines, 
lower-left quadrant; (b) medium-thickness horizontal lines, upper-right quadrant; and (c) thin 

vertical lines, lower-right quadrant 
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4.4 Line Salience 
Using the procedure outlined in section 3.8 above, we created three line colors that varied in 
salience.  Table 5 shows the average salience for each line color used in Experiment 2.  

Table 5. Color and Salience Values for the Three Line Colors 

Line color name RGB Mean line salience 
Black RGB (0, 0, 0) 100 (SD=7.8) 

Red RGB (185, 9, 9) 165 (SD=2.5) 

Blue RGB (4, 27, 245) 251 (SD=1.3) 

The black lines have the lowest salience followed by the red lines.  The blue lines have the 
highest salience.  Based on previous research and the color results from Experiment 1, we predict 
that discrimination performance will be highest for the blue lines and lowest for the black lines. 

4.5 Independent Variable 

The independent variable in Experiment 2 is the line segment color (i.e., black, red, and blue). 
Color is a between-subjects variable, meaning that each participant was randomly allocated to 
one of three line-color conditions. 

4.6 Dependent Variables 

The dependent variables are the observed counts of hits, false alarms, misses, correct rejections, 
and the time it took the participant to respond. 

4.7 Procedure 

After reading and signing the Informed Consent Statement, participants completed a biographical 
questionnaire.  Next, the researcher explained to the participant that the task instructions would 
be presented on-screen in a self-paced manner.  After following the on-screen instructions, 
participants first completed the practice trials, followed by the experimental trials.  Participants 
were instructed to respond as quickly as possible without making any errors.  Participants could 
pause for as long as they wanted after each trial before continuing the experiment.  There was no 
feedback during the practice or experimental trials. 

Participants began each trial of the change-detection task by pressing the space bar on the 
keyboard. For each trial, the participant responded to whether or not (“YES” or “NO”) a change 
occurred between the two images.  The first 20 trials were practice trials, divided into 16 signal 
(change) trials and 4 noise (no change) trials.  Following the practice trials, the same process was 
repeated for an additional 576 trials.  Half of the 576 trials were noise trials (i.e., no change) with 
the remainder of the trials being signal trials (i.e., change). For each participant, we presented the 
trials in random order.  

For Experiment 2, we used the same one-shot technique as used for Experiment 1.  During the 
experiment, participants initiated each trial by pressing the spacebar on the computer keyboard.  
First, a grey screen with a central fixation cross appeared for 1000 ms, and then Image 1 was 
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displayed for 100 ms.  Image 1 was then replaced by a blank, grey screen for 1000 ms, after 
which Image 2 was displayed for 100 ms (Keshvari, van den Berg, & Ma, 2013; Wilken & Ma, 
2004).  Participants provided a response by pressing one of two buttons on the keyboard to 
indicate either “Yes” (change detected) or “No” (no change detected).  The software waited for a 
response for 60 s; if the participant did not enter a response within that period, the trial ended 
automatically and recorded a “no response.”  

4.8 Data Analysis 

We used the same analysis methods for Experiment 2 as used for Experiment 1. 

4.9 Results 

In the following section, we present the outcome of the line discrimination analysis.  First, we 
assess the main effect of age on line discriminability.  Second, we assess the main effect of line 
color (i.e., salience) on discriminability.  Third, we present an analysis of the effect of line 
thickness on discriminability.  Lastly, we present a response time analysis for each of the three 
line colors. 

4.9.1 Effects of participant age on line discrimination accuracy 

Similar to Experiment 1, we used a robust linear regression analysis to assess the main effects of 
participant age on line discriminability. 

Figure 51 shows the outcome of the regression analysis.  We have participant age on the x-axis 
and accuracy (d’) on the y-axis discrimination.  The black circles represent participant d’ values 
(three values per participant for the three line-thickness conditions).  The blue horizontal lines 
represent regression lines, and the three vertical distributions are superimposed t-distributed 
noise distributions.  

 

Figure 51. Regression lines and noise distributions for the prediction of d’ from Age 

Figure 52 shows the mean posterior outcome for β0 (intercept), β1 (slope), and the scale 
parameter (σ).  The intercept has a posterior mode of 2.88, which is the value of y when x = 0.  
The slope has a mode of -0.0139.  The scale has a mode of 1.13.  However, because the value 0 
is located within the 95% HDI, the slope is not credible.  It means that a slope of 0 is a likely 
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predicted outcome, and a slope of 0 implies a complete lack of a relationship between variable y 
(d’) and predictor x (age).  Therefore, there is no credible effect of participant age on 
discrimination accuracy in the line discrimination data. 

 

Figure 52. The posterior intercept (β0), slope (β1), and scale (σ) parameters from the robust 
linear regression analysis 

4.9.2 Line color 

Figure 53 shows the discriminability and bias outcome for the black, red, and blue line 
conditions.  The blue lines have the highest discriminability (d), followed by the red lines.  The 
black lines have the lowest discriminability.  

 

Figure 53. Posterior distributions for the black, red, and blue line colors in terms of 
discriminability (d) and bias (c) 

The black and red lines also have a higher positive value of the bias (c) compared with the blue 
lines, meaning that participants displayed a greater bias in responding “NO” to the black and red 
line stimuli. 
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Figure 54 shows the mean posterior discriminability for the three line colors along with their 
contrasts.  All three contrasts are credible (i.e., the value 0 is not included in the 95% HDI), with 
the discriminability of the red lines (mean d = 1.92) being higher than the black lines (mean d = 
1.21, mean difference = -0.712 with the 95% HDI from -0.831 to -0.593), the discriminability of 
the blue lines (mean d = 2.96) being higher than the black lines (mean d = 1.21, mean difference 
= -1.75 with the 95% HDI from -1.89 to -1.61), and the discriminability of the blue lines (mean d 
= 2.96) being higher than the discriminability of the red lines (mean d = 1.92, mean difference = 
-1.04 with the 95% HDI from -1.18 to -0.894).  

 

Figure 54. The mean posterior discriminability for the three line colors (top)  
and their contrasts (bottom) 

In summary, there is a main effect of color on line discriminability. Participant discriminability 
performance exactly follows the relative salience for the black (salience; M = 100, SD = 7.8), red 
(salience; M = 165, SD = 2.5), and blue lines (salience; M = 251, SD = 1.3).  Participants have 
the lowest discriminability performance for the black lines (d; M = 1.21), followed by the red 
lines (d; M=1.92), and shows the highest discriminability performance for the blue lines (d; 
M=2.96).  Therefore, in the present change-detection experiment, symbol salience is a predictor 
of discriminability performance. 

4.9.3 Line thickness 

We also analyzed the data to assess whether the main effect of color (i.e., salience) is invariant 
across the three line thicknesses.  Figure 55 shows the posterior distributions for the thick (left), 
medium (middle), and thin (right) line stimuli.  As shown, the discriminability index d follows 
the same trend for all line thicknesses, with the blue line having the highest discriminability 
index, followed by the red lines, and with the black lines having the lowest discriminability.  
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   (a)       (b)     (c) 

Figure 55. The posterior discriminability and bias for the: (a) thick, (b) medium,  
and (c) thin line segments 

For the thick-line stimuli in Figure 55(a), the discriminability (d) for the black lines has a 
posterior mean=1.48 (95% HDI from 1.34 to 1.62).  For the red lines, the posterior mean = 2.44 
(95% HDI from 2.28–2.61). For the blue lines, the posterior mean = 3.35 (95% HDI from 3.14 to 
3.57).  All contrasts between the three line colors are credible, with the red lines having a larger 
d than the black lines (mean difference = -0.97; 95% HDI from -1.18 to -0.75), the blue lines 
having a larger d than the black lines (mean difference = -1.88; 95% HDI from -2.13 to -1.62), 
and the blue lines having a larger d than the red lines (mean difference = -0.91; 95% HDI from -
1.18 to -0.64).  There was also a credible difference in the bias (c) between the blue and black 
lines, with a greater bias in responding “NO” for the black lines than the blue lines (mean 
difference = 0.19; 95% HDI from 0.059 to 0.32). 

For the medium line thickness in Figure 55(b), the d for the black lines has a posterior mean = 
1.39 (95% HDI from 1.26 to 1.53).  The red lines have a mean d = 2.08 (95% HDI from 1.92 to 
2.24).  The blue lines have a mean d = 3.13 (95% HDI from 2.93 to 3.33).  All contrasts between 
the three line colors are credible, with a larger d for the red lines compared with the black lines 
(mean difference = -0.69; 95% HDI from -0.90 to -0.48), a larger d for the blue lines compared 
with the black lines (mean difference = -1.73; 95% HDI from -1.98 to -1.49), and a larger d for 
the blue lines compared with the red lines (mean difference = -1.05; 95% HDI from -1.3 to -
0.79).  There was also a credible difference in the bias (c) between the blue and black lines, with 
a greater bias in responding “NO” for the black lines than the blue lines (mean difference = 0.14; 
95% HDI from 0.02 to 0.26). 

For the thin lines in Figure 55(c), the d for the black lines has a posterior mean = 0.787 (95% 
HDI from 0.65 to 0.92).  The red lines have a mean d= 1.38 (95% HDI from 1.24 to 1.53). The 
blue lines have a mean d = 2.53 (95% HDI from 2.4 to 2.7).  Again, all contrasts between the 
three line colors are credible, with a larger d for the red lines compared with the black lines 
(mean difference = -0.6; 95% HDI from -0.8 to -0.4), a larger d for the blue lines than the black 
lines (mean difference = -1.75; 95% HDI from -1.9 to -1.53), and a larger d for the blue lines 
compared with the red lines (mean difference = -1.15; 95% HDI from -1.4 to -0.92).  There were 
also credible differences in the bias (c) between the blue and black lines with a greater bias in 
responding “NO” for the black lines than the blue lines (mean difference = 0.27; 95% HDI from 
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0.16 to 0.38), and a greater bias in responding “NO” for the red lines than the blue lines (mean 
difference = 0.29; 95% HDI from 0.17 to 0.4). 

In summary, participant discriminability performance follows the same trend for all three line 
thicknesses (i.e., thin, medium, and thick) with the blue lines yielding the highest 
discriminability performance followed by the red lines, and with the black lines yielding the 
lowest discriminability performance. 

4.9.4 Response time 

The result of the present experiment has shown that line discriminability is affected by the line 
salience.  However, because the discriminability varies for line segments with different salience, 
there might be a difference in the time it takes to visually encode the three line colors.  The logic 
is that conspicuous line changes will be easier to detect and therefore yield shorter response time 
compared with less conspicuous symbol changes.  Therefore, in the following section, we 
present an analysis of the main effect of color (i.e., salience) on response time. For the analysis, 
we used all response times for each subject for the signal trials. 

Figure 56 shows the response time data, the mean of the ex-Gaussian distribution, and the 
variance of the ex-Gaussian distribution for the black (see Figure 56(a–c)), red (see Figure (d–f)), 
and blue (see Figure 56(g–i)) line conditions. 

 

Figure 56. Response time data (a, d, g) with the mean (b, e, h) and variance (c, f, i) of the ex-
Gaussian distribution for the black (a–c), red (d–f), and  

blue (g–i) line conditions 

(a) (b) (c) 

(d) 
 

(e) (f) 

(g) 
 

(h) 
 

(i) 
 



52 

The posterior mean response time for the black lines is 1.06 sec (mean variance = 0.24), red lines 
0.98 sec (mean variance = 0.20), and blue lines 0.92 sec (mean variance = 0.22).  Figure 57 
shows the difference of means for the comparison between the black, red, and blue response time 
times.  All differences are credible (the value 0 is not included in the 95% HDI), showing a 
longer response time for the black lines compared with the red lines (left; mean = 0.08, 95% HDI 
from 0.04 to 0.11), a longer response time for the black lines than the blue lines (middle; mean = 
0.13, 95% HDI from 0.1 to 0.16), and a longer response time for the red lines compared with the 
blue lines (right; mean = 0.05, 95% HDI from 0.02 to 0.08).  

 
     (a)                 (b)      (c) 

Figure 57. Differences of mean ex-Gaussian response time between the: (a) black and red lines; 
(b) black and blue lines; and (c) red and blue lines 

However, although credibly different, these differences of means are rather small.  Furthermore, 
we are using a large sample for our analysis.  This means that we have to look at the effect sizes 
for the differences of means because it is the size of the effect that is important.  Figure 58 shows 
the standardized effect sizes for the comparison between the black and red (see Figure 58(a); 
mean = 0.16), black and blue (see Figure 58(b); mean = 0.27), and the red and blue (see Figure 
58(c); mean = 0.11).  

For the red versus blue effect size (see Figure 58(c)), we have the 95% HDI completely within 
the ROPE margins (-0.2 to 0.2).  Therefore, we declare a null effect for the difference of 
response time means for the red and blue conditions. Similarly, for the black and red effect size 
(see Figure 58(a)), we have 84% of the 95% HDI included within the ROPE.  This implies a tiny 
effect, which is unlikely to have any important practical consequences.  The effect size for the 
difference of means between the black and blue conditions (mean = 0.27), however, is small but 
only shows 2% of the 95% HDI within the ROPE.  Therefore, this difference can have a practical 
importance with the response time for the black lines being 0.27 standard deviations longer than 
the response time for the blue lines. 
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     (a)            (b)         (c) 

Figure 58. Standardized effect sizes for the differences of means for the: (a) black and red lines; 
(b) black and blue lines; and (c) the red and blue lines. For this analysis, we are using a ROPE 
that spans from -0.2 to 0.2. If the 95% HDI is completely within the ROPE, we declare a null 

effect for practical purposes 

In summary, the analysis of line discriminability response times showed credible differences 
between the black, red, and blue line colors.  The blue lines have the shortest response time, 
followed by red response time, and finally the black lines with the longest response time.  
However, the effects are generally small, and only the difference between the black line response 
time and the blue line response time is deemed to have potential practical consequences.  

4.9.5 Effects of participant age on line discrimination Response Time 

To assess the effect of age on line discriminability response time, we performed a linear 
regression on the response time data using all trials for each participant. Figure 59 shows the 
outcome of the linear regression analysis.  We have participant age in years on the x-axis and 
response time in seconds on the y-axis. As shown by Figure 59, the regression lines have a slight 
positive slope, indicating that line response times increase with an increasing age. 

 

 

Figure 59. Regression lines and noise distributions for the prediction of line response time from 
age 
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Figure 60 shows the mean posterior outcome for β0 (intercept), β1 (slope), and the scale 
parameter (σ).  The intercept has a mode of 0.7, which is the value of y when x = 0.  The credible 
slope has a posterior mode of 0.00409.  This means that as we increase x (age) by 1, y will 
increase by the value of β1.  

 

Figure 60. The posterior intercept (β0), slope (β1), and scale (σ) parameters from the linear 
regression of line response time data and age 

Figure 61 shows the posterior distributions of predicted mean values of response time (y) for x1 = 
20 and x2 = 70 from the MCMC sampling.  The model predicts a mean response time of 0.8 
seconds for age = 20 and a mean response time of 1.0 seconds for age = 70.  

 

Figure 61. The posterior predicted distributions and mean response time values for line 
discrimination and x1 = 20 years and x2 = 70 years 

In summary, a linear regression model on the response time data predicts an effect of age on 
response time, with a predicted posterior mean difference of 200 msec between age = 20 and age 
= 70. 
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5 DISCUSSION 

Previous research has found change blindness effects for commonly used weather display 
symbols (Ahlstrom & Suss, 2014; Ahlstrom et al., 2015a, 2015b).  Using simple change-
detection tasks, researchers found that different symbology renderings of the same weather data 
led to varying performance.  Moreover, the change-blindness effect was not restricted to simple 
change-detection tasks; it also accounted for pilot detection of symbol color changes during 
simulated flights. 

In the present study, we addressed this symbol-detection gap by evaluating the effect of symbol 
enhancement on pilot visual performance.  Specifically, we used symbol salience enrichments to 
increase pilot change-detection performance.  This is in line with current frameworks for visual 
search and covert attention modeling that stress the importance of saliency for object and scene 
encoding (Achanta, Hemami, Estrada & Süsstrunk, 2009; Itti & Koch, 2000; Itti, Koch & 
Niebur, 1998).  It is also consistent with previous research on the importance of salience for 
detection of changes in front-of-pack labels (Becker et al., 2016), improving information 
visualizations (Jänicke & Chen, 2010), predicting fixation locations (Parkhurst, Law, & Niebur, 
2002), and estimating change-detection performance (Verma & McOwan, 2010).  

The result of our symbol enhancements was a main effect of symbol salience on change-
detection performance.  This is because salient symbols stand out against neighboring symbols in 
an image, thereby capturing attention and enhancing detection.  For the line, lightning, and 
METAR symbol trials, pilot-detection performance was credibly higher for high-salience lines 
and credibly higher for the salience-enriched symbols (Enhanced) compared with the original 
symbols (Control).  For time-stamp information, however, there was no credible difference in 
discriminability between the Enhanced and Control conditions.  We conclude that the lack of an 
effect of salience for time-stamp information is entirely due to the time-stamp location.  The 
result for both the Control and the Enhanced time-stamp conditions show near-chance 
discriminability, similar to the result reported by Ahlstrom and Suss (2014).  Currently, many 
commercial weather products display time-stamp information for displayed weather data (FAA, 
2010), and this information is frequently presented in the menu bar or in one of the upper corners 
of the display (Latorella & Chamberlain, 2002).  Because this time-stamp location precludes 
efficient detection and encoding, display developers need to design time-stamp information that 
overcomes this deficiency.  

Overall, the outcome of the present study shows that we can use symbol salience to enhance 
discrimination performance.  However, the outcome also shows that discrimination performance 
is not consistent across all age groups.  For the lightning and METAR trials, we found that 
discrimination accuracy decreased with an increased pilot age.  In addition, for each year of age 
there was an increase in response time for discrimination of lightning, METAR, time stamp, and 
line symbols.  Similar effects of age on pilot performance have been documented for a variety of 
tasks.  For example, Hardy and Parasuraman (1997) reviewed previous research of cognitive 
proficiency and flight performance and summarized pilot age-group differences for perceptual-
motor skills, memory, attention, and problem solving.  Similarly, Peich, Husain, and Bays (2013) 
report on cognitive age-related reductions in maintaining associations (i.e., bindings) between 
individual objects in visual arrays during change detection.  Researchers have used random walk 
models to analyze age effects on information processing like the longer response times for older 
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adults compared with younger adults (Spieler, 2001).  According to Sekuler and Sekuler (2000), 
older adults have particular difficulties in tasks that require rapid processing, high light 
sensitivity, and dynamic vision.  Unfortunately, these are the very same visual requirements that 
underlie efficient scan patterns and symbol encoding during single-pilot operations. 

Whereas age-related declines in memory and vision can affect many aspects of everyday life, 
these reductions are also likely to affect the encoding and detection of display changes in the 
cockpit.  There is now sufficient evidence of credible differences in pilot change-detection 
performance depending on the symbol shape and color.  There is also evidence that the detection 
time and encoding time of weather symbols vary as a function of pilot age.  These are important 
findings that should guide future weather display developments.  First, all weather display 
symbols should allow rapid encoding and detection for pilots of all ages.  This is especially 
important because of the large number of different weather elements that are overlaid on modern 
multifunctional displays (FAA, 2010) and the relatively large (~30%) population of private pilots 
that are 60 years of age or older (FAA, 2016).  If not taken into consideration, weather symbol 
changes or weather symbol updates can lead to salience problems where important information 
fails to visually segregate from less-critical background information.  

We believe that the current study provides a general framework for how to counter these effects 
by enhancing weather display symbols for efficient use in a multitasking cockpit environment.  
During our stimulus creation, we used a step-wise procedure for salience-based analyses of the 
change-detection images (similar to the method used by Becker et al., 2016).  First, we subjected 
our images to a frequency-tuned salience analysis using the algorithm by Achanta, Hemami, 
Estrada, and Süsstrunk (2009).  The outputs of the algorithm are high-resolution salience maps 
on which bright objects have the highest salience, and dark objects have the lowest salience.  
Second, we analyzed the salience maps to determine each weather symbol’s salience.  Third, we 
enhanced symbols by adjusting the symbol color, thereby increasing the symbol salience.  If 
display developers would use this framework, it would support GA pilots and possibly increase 
the efficiency and safety of operations by providing information that can be used to avoid 
adverse weather conditions during flight. 

6 KEY FINDINGS 

This study specifically evaluated the effect of symbol enhancement on pilot visual performance 
to reduce or resolve the change blindness gap.  This study evaluated symbol color enhancements, 
symbol shapes, line thickness, and age-related effects.  

In this study, we found following key results. 

• We found an overall effect of participant age on discrimination accuracy and an increase 
in response time as age increases.  

• We found a main effect of salience for detection of the line, lightning, and METAR 
symbols. 

• We found a main effect of line color discriminability, with blue lines having the highest 
discriminability, followed by the red and then black lines.   

• In general, enhancing the display symbols increases the discriminability accuracy and 
reduces the response time.   
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• Although this part-task study shows that enhancing symbol salience may help improve 
change-detection capabilities, it does not evaluate whether these enhancements would be 
adequate to draw attention to displays in a dynamic cockpit environment.  

Companion research conducted by Ahlstrom et al. (2017) evaluated the effect of symbol salience 
in a dynamic, real-time simulation environment.  The real-time simulation was needed to 
determine if salience alone will adequately enhance detection capabilities.  

7 RECOMMENDATIONS 

This part-task study specifically evaluated the effect of symbol enhancement on visual 
performance for GA pilots.  We intentionally limited our pool of participants to GA with no 
commercial experience and limited instrument flight time.  It is possible that commercial pilots 
who have more experience with cockpit weather technology may be more adept at detecting 
change.  Evaluating differences in commercial versus GA pilots may help tailor display features 
for different user groups (i.e., GA, aging GA, or commercial) or identify training needs.  

1. Conduct follow-up studies to assess the effect of symbol enhancement of weather 
displays on commercial pilots.  This study evaluated GA pilots with a wide range of ages.  
Are there differences in the effects of symbol enhancement on pilots with a range of 
experience? 

2. Conduct follow-up study on the placement of time-stamp information.  This study found 
no credible difference in the detection of Enhanced versus Control time-stamp 
information.  Is there a potential for detection improvement by changing the time-stamp 
location? 
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